Swertfeger et al., 2017 - Google Patents
Direct observation of the 2D gain profile in high power tapered semiconductor optical amplifiersSwertfeger et al., 2017
View PDF- Document ID
- 6080826347809344199
- Author
- Swertfeger R
- Beil J
- Misak S
- Thomas J
- Campbell J
- Renner D
- Mashanovitch M
- Leisher P
- Publication year
- Publication venue
- International Conference on Photonics, Optics and Laser Technology
External Links
Snippet
A novel experimental approach to permit direct observation of the 2D gain profile in high power tapered semiconductor optical amplifiers and integrated MOPA devices is reported. A two-dimensional simulation of the photon, carrier, and gain distributions inside the tapered …
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
- H01S5/4031—Edge-emitting structures
- H01S5/4043—Edge-emitting structures with vertically stacked active layers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/0941—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feed-back lasers (DFB-lasers)
- H01S5/125—Distributed Bragg reflector lasers (DBR-lasers)
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers)
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/07—Construction or shape of active medium consisting of a plurality of parts, e.g. segments
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation; Circuits therefor
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/026—Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/14—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
- H01S3/16—Solid materials
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/30—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves using scattering effects, e.g. stimulated Brillouin or Raman effects
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S2301/00—Functional characteristics
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xie et al. | Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ> 10 μm | |
Wenzel et al. | Fundamental-lateral mode stabilized high-power ridge-waveguide lasers with a low beam divergence | |
Rauch et al. | Impact of longitudinal refractive index change on the near-field width of high-power broad-area diode lasers | |
Xie et al. | Room Temperature CW Operation of Short Wavelength Quantum Cascade Lasers Made of Strain Balanced Ga $ _ {\bm x} $ In $ _ {\bm {1-x}} $ As/Al $ _ {\bm y} $ In $ _ {\bm {1-y}} $ As Material on InP Substrates | |
Pietrzak et al. | 1060-nm Ridge Waveguide Lasers Based on Extremely Wide Waveguides for 1.3-W Continuous-Wave Emission Into a Single Mode With FWHM Divergence Angle of $9^{\circ}\times 6^{\circ} $ | |
Winterfeldt et al. | Assessing the influence of the vertical epitaxial layer design on the lateral beam quality of high-power broad area diode lasers | |
Lee et al. | Operation of photonic crystal membrane lasers above room temperature | |
Decker et al. | 25-W monolithic spectrally stabilized 975-nm minibars for dense spectral beam combining | |
Williams et al. | Design of high-brightness tapered laser arrays | |
Butt et al. | Laser diode optical output dependence on junction temperature for high-power laser systems | |
Leisher et al. | > 3W diffraction-limited 1550 nm diode laser amplifiers for LIDAR | |
Swertfeger et al. | Direct observation of the 2D gain profile in high power tapered semiconductor optical amplifiers | |
Ogrodowski et al. | Tapered amplifiers for high-power MOPA setups between 750 nm and 2000 nm | |
Campbell et al. | 2.7 W continuous wave nearly-diffraction-limited output 1550 nm tapered laser diode amplifier | |
JP2002280668A (en) | High power, kink-free, single mode laser diode | |
Davenport et al. | Heterogeneous silicon/InP semiconductor optical amplifiers with high gain and high saturation power | |
Kallenbach et al. | High-power high-brightness ridge-waveguide tapered diode lasers at 14xx nm | |
Schultz et al. | Narrow vertical far-field 975-nm broad-area DFB lasers for wide temperature range operation | |
Li et al. | High-brightness tapered laser diodes with photonic crystal structures | |
Li et al. | Numerical simulation and experiment of high brightness tapered lasers | |
Yu et al. | Spectral investigation of multimode fiber Bragg grating based external-cavity semiconductor lasers | |
Ryu et al. | Reverse-taper mid-infrared quantum cascade lasers for coherent power scaling | |
Pham et al. | Monolithic InP master oscillator power amplifier for free space optical transmissions at 1.5 µm | |
Guermache et al. | Experimental demonstration of spatial hole burning reduction leading to 1480-nm pump lasers output power improvement | |
Yao et al. | 10-W pulsed operation of substrate emitting photonic-crystal quantum cascade laser with very small divergence |