Fujiki et al., 2021 - Google Patents
Development on measurement method for Thomson coefficient of thin filmFujiki et al., 2021
- Document ID
- 5992011628009908627
- Author
- Fujiki H
- Amagai Y
- Okawa K
- Harumoto T
- Kaneko N
- Publication year
- Publication venue
- Measurement
External Links
Snippet
It is in general difficult to accurately measure the Thomson coefficient of a thin film owing to the heat transfer through the substrate. Therefore, we propose a new method to measure the Thomson coefficient of a metallic thin film. The Thomson coefficient of a metallic film on a …
- 239000010409 thin film 0 title abstract description 36
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L35/00—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L35/12—Selection of the material for the legs of the junction
- H01L35/14—Selection of the material for the legs of the junction using inorganic compositions
- H01L35/20—Selection of the material for the legs of the junction using inorganic compositions comprising metals only
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K17/00—Measuring quantity of heat
- G01K17/06—Measuring quantity of heat conveyed by flowing mediums, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
- G01K17/08—Measuring quantity of heat conveyed by flowing mediums, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
- G01K17/20—Measuring quantity of heat conveyed by flowing mediums, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature across a radiating surface, combined with ascertainment of the heat transmission coefficient
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply, e.g. by thermoelectric elements
- G01K7/02—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply, e.g. by thermoelectric elements using thermoelectric elements, e.g. thermocouples
- G01K7/04—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply, e.g. by thermoelectric elements using thermoelectric elements, e.g. thermocouples the object to be measured not forming one of the thermo-electric materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply, e.g. by thermoelectric elements
- G01K7/02—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply, e.g. by thermoelectric elements using thermoelectric elements, e.g. thermocouples
- G01K7/10—Arrangements for compensating for auxiliary variables, e.g. length of lead
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L35/00—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L35/28—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof operating with Peltier or Seebeck effect only
- H01L35/32—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof operating with Peltier or Seebeck effect only characterised by the structure or configuration of the cell or thermo-couple forming the device including details about, e.g., housing, insulation, geometry, module
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/18—Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply, e.g. by thermoelectric elements
- G01K7/16—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply, e.g. by thermoelectric elements using resistive elements
- G01K7/22—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply, e.g. by thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
- G01K7/223—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply, e.g. by thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor characterised by the shape of the resistive element
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/20—Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/10—Radiation pyrometry using electric radiation detectors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L35/00—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L35/02—Details
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L35/00—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L35/34—Processes or apparatus peculiar to the manufacture or treatment of these devices or of parts thereof
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K3/00—Thermometers giving results other than momentary value of temperature
- G01K3/08—Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhou et al. | Apparatus for Seebeck coefficient and electrical resistivity measurements of bulk thermoelectric materials at high temperature | |
Kraemer et al. | A simple differential steady-state method to measure the thermal conductivity of solid bulk materials with high accuracy | |
Tripathi et al. | An experimental setup for the simultaneous measurement of thermoelectric power of two samples from 77 K to 500 K | |
Linseis et al. | Platform for in-plane ZT measurement and Hall coefficient determination of thin films in a temperature range from 120 K up to 450 K | |
Amagai et al. | Precise measurement of absolute Seebeck coefficient from Thomson effect using ac-dc technique | |
Paul | Simple apparatus for the multipurpose measurements of different thermoelectric parameters | |
Adnane et al. | High temperature setup for measurements of Seebeck coefficient and electrical resistivity of thin films using inductive heating | |
Fujiki et al. | Development on measurement method for Thomson coefficient of thin film | |
Anatychuk et al. | On improvement of the accuracy and speed in the process of measuring characteristics of thermoelectric materials | |
Narjis et al. | Design of a simple apparatus for the measurement of the seebeck coefficient | |
Rawat et al. | Simple design for Seebeck measurement of bulk sample by 2-probe method concurrently with electrical resistivity by 4-probe method in the temperature range 300–1000 K | |
Castillo et al. | Thermoelectric characterization by transient Harman method under nonideal contact and boundary conditions | |
Patel et al. | Automated instrumentation for high-temperature Seebeck coefficient measurements | |
Amagai et al. | High-accuracy compensation of radiative heat loss in Thomson coefficient measurement | |
Demidov et al. | The method of measuring the thermoelectric power in the thin films of the semimetals and narrow-gap semiconductors formed on the thin substrates | |
Ao et al. | Radiation‐Corrected Harman Method for Characterization of Thermoelectric Materials | |
Taylor et al. | A model for the non-steady-state temperature behaviour of thermoelectric cooling semiconductor devices | |
Garrido et al. | New method for evaluating the Peltier coefficient based on temperature measurements in a thermoelectric module | |
Dhawan et al. | Independent determination of Peltier coefficient in thermoelectric devices | |
Edler et al. | Reference material for Seebeck coefficients | |
Hu et al. | Characterization of thermoelectric conversion for a stacked leg with parasitic heat radiation | |
Ling et al. | Thermal conductivity measurement of thermoelectric films using transient Photo-Electro-Thermal technique | |
Lu et al. | Integrated measurement of thermoelectric properties for filamentary materials using a modified hot wire method | |
Guralnik et al. | Determination of thermoelectric properties from micro four-point probe measurements | |
Patel et al. | Automated instrumentation for the determination of the high-temperature thermoelectric figure-of-merit |