[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Dai et al., 2015 - Google Patents

Screen Printed Alizarin‐Based Carbon Electrodes: Monitoring pH in Unbuffered Media

Dai et al., 2015

Document ID
5986774207970684689
Author
Dai C
Song P
Wadhawan J
Fisher A
Lawrence N
Publication year
Publication venue
Electroanalysis

External Links

Snippet

An alizarin based voltammetric pH sensor is introduced. This device is fabricated by screen printing the alizarin, which is a pH‐sensitive redox compound, mixed with carbon ink onto the carbon aluminum (aluminum foil coated with carbon paste). This electrode shows a …
Continue reading at analyticalsciencejournals.onlinelibrary.wiley.com (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes electrical and mechanical details of in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/42Measuring disposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte
    • G01N27/423Coulometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors
    • G01N27/4045Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors for gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4166Systems measuring a particular property of an electrolyte
    • G01N27/4167Systems measuring a particular property of an electrolyte pH
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material
    • G01N27/04Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/80Indicating pH value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/26Investigating or analysing materials by specific methods not covered by the preceding groups oils; viscous liquids; paints; inks

Similar Documents

Publication Publication Date Title
Dai et al. Screen Printed Alizarin‐Based Carbon Electrodes: Monitoring pH in Unbuffered Media
Mousavi et al. Comparison of Multi‐walled Carbon Nanotubes and Poly (3‐octylthiophene) as Ion‐to‐Electron Transducers in All‐Solid‐State Potassium Ion‐Selective Electrodes
Cicmil et al. Ionic Liquid‐Based, Liquid‐junction‐free reference electrode
Sha et al. A novel biomass derived carbon quantum dots for highly sensitive and selective detection of hydrazine
Wang et al. Ionic Liquid Functionalized Graphene‐Based Electrochemical Biosensor for Simultaneous Determination of Dopamine and Uric Acid in the Presence of Ascorbic Acid
Papp et al. Lipophilic Multi‐walled Carbon Nanotube‐based Solid Contact Potassium Ion‐selective Electrodes with Reproducible Standard Potentials. A Comparative Study
Deýlová et al. Voltammetric Determination of 4‐Nitrophenol and 5‐Nitrobenzimidazole Using Different Types of Silver Solid Amalgam Electrodes–A Comparative Study
Mahmoud et al. Design of solid‐contact ion‐selective electrode with graphene transducer layer for the determination of flavoxate hydrochloride in dosage form and in spiked human plasma
Aziz et al. Electrochemical investigation of metal oxide conducting electrodes for direct detection of sulfide
Zhang et al. Voltammetric determination of both concentration and diffusion coefficient by combinational use of regular and microelectrodes
Mohammadi et al. Nanomolar determination of methyldopa in the presence of large amounts of hydrochlorothiazide using a carbon paste electrode modified with graphene oxide nanosheets and 3‐(4′‐amino‐3′‐hydroxy‐biphenyl‐4‐yl)‐acrylic acid
Hong et al. Application of multiwalled carbon nanotubes/ionic liquid modified electrode for amperometric determination of sulfadiazine
Roushani et al. Electrochemical Detection of Persulfate at the Modified Glassy Carbon Electrode with Nanocomposite Containing Nano‐Ruthenium Oxide/Thionine and Nano‐Ruthenium Oxide/Celestine Blue
Wiedemair et al. Developing an amperometric hydrogen peroxide sensor for an exhaled breath analysis system
Tantawy et al. A novel glassy carbon electrode modified with multi-walled carbon nanotubes for potentiometric xipamide determination
Mahmoud et al. Microfabricated Solid‐contact potentiometric sensor for determination of Tedizolid phosphate, application to Content Uniformity Testing
Martin et al. Solid‐contact Acetate‐selective Electrode Based on a 1, 3‐bis (carbazolyl) urea‐ionophore
Kałuża et al. Voltammetric Properties of all‐solid state ion‐selective electrodes with multiwalled carbon nanotubes‐poly (3‐octylthiophene‐2, 5‐diyl) nanocomposite transducer
Koçak Platinum nanoparticles/poly (isoleucine) modified glassy carbon electrode for the simultaneous determination of hydroquinone and catechol
Cinková et al. Improving limits of detection. Microdisc versus microcylinder electrodes
Babaei et al. Selective simultaneous determination of paracetamol and uric acid using a glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite
Wang et al. Rapid in situ detection of ultratrace 2, 4-dinitrotoluene solids by a sandwiched paper-like electrochemical sensor
Teradale et al. Electrochemical investigation of catechol at poly (niacinamide) modified carbon paste electrode: a voltammetric study
Nagles et al. Development of an electrochemical sensor to detect dopamine and ascorbic acid based on neodymium (III) oxide and chitosan
Zavazalova et al. Carbon‐Based Electrodes for Sensitive Electroanalytical Determination of Aminonaphthalenes