Dong et al., 2017 - Google Patents
Blur kernel estimation via salient edges and low rank prior for blind image deblurringDong et al., 2017
- Document ID
- 5820010485254911998
- Author
- Dong J
- Pan J
- Su Z
- Publication year
- Publication venue
- Signal Processing: Image Communication
External Links
Snippet
Blind image deblurring, ie, estimating a blur kernel from a single blurred image, is a severely ill-posed problem. In this paper, we find that the blur process changes the similarity of neighboring image patches. Based on the intriguing observation, we show how to effectively …
- 238000000034 method 0 abstract description 27
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20172—Image enhancement details
- G06T2207/20182—Noise reduction or smoothing in the temporal domain; Spatio-temporal filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image
- G06T5/001—Image restoration
- G06T5/003—Deblurring; Sharpening
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20048—Transform domain processing
- G06T2207/20056—Discrete and fast Fourier transform, [DFT, FFT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image
- G06T5/001—Image restoration
- G06T5/002—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20048—Transform domain processing
- G06T2207/20064—Wavelet transform [DWT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
- G06K9/52—Extraction of features or characteristics of the image by deriving mathematical or geometrical properties from the whole image
- G06K9/527—Scale-space domain transformation, e.g. with wavelet analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20016—Hierarchical, coarse-to-fine, multiscale or multiresolution image processing; Pyramid transform
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20024—Filtering details
- G06T2207/20028—Bilateral filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20112—Image segmentation details
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformation in the plane of the image, e.g. from bit-mapped to bit-mapped creating a different image
- G06T3/40—Scaling the whole image or part thereof
- G06T3/4053—Super resolution, i.e. output image resolution higher than sensor resolution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image
- G06T5/20—Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image by the use of local operators
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image
- G06T5/007—Dynamic range modification
- G06T5/008—Local, e.g. shadow enhancement
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformation in the plane of the image, e.g. from bit-mapped to bit-mapped creating a different image
- G06T3/40—Scaling the whole image or part thereof
- G06T3/4084—Transform-based scaling, e.g. FFT domain scaling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | Motion blur kernel estimation via deep learning | |
Pan et al. | Robust kernel estimation with outliers handling for image deblurring | |
Nah et al. | Deep multi-scale convolutional neural network for dynamic scene deblurring | |
Sun et al. | Gradient profile prior and its applications in image super-resolution and enhancement | |
Dong et al. | Blur kernel estimation via salient edges and low rank prior for blind image deblurring | |
Lai et al. | Blur kernel estimation using normalized color-line prior | |
Pan et al. | Kernel estimation from salient structure for robust motion deblurring | |
Remez et al. | Deep convolutional denoising of low-light images | |
Dong et al. | Blind image deblurring with outlier handling | |
Hacohen et al. | Deblurring by example using dense correspondence | |
Cho et al. | Fast motion deblurring | |
Deng et al. | Single image super-resolution by approximated Heaviside functions | |
Kumar | Deblurring of motion blurred images using histogram of oriented gradients and geometric moments | |
Pan et al. | Motion blur kernel estimation via salient edges and low rank prior | |
Jiang et al. | Text image deblurring via two-tone prior | |
Xu et al. | Fast blind deconvolution using a deeper sparse patch-wise maximum gradient prior | |
Ge et al. | Blind image deblurring using a non-linear channel prior based on dark and bright channels | |
Askari Javaran et al. | Local motion deblurring using an effective image prior based on both the first-and second-order gradients | |
Hu et al. | Image deblurring via enhanced local maximum intensity prior | |
Ge et al. | Blind image deblurring with gaussian curvature of the image surface | |
Zhuang et al. | Divide-and-conquer framework for image restoration and enhancement | |
Xu et al. | Blind image deblurring using group sparse representation | |
Ge et al. | Blind image deconvolution via salient edge selection and mean curvature regularization | |
Zhao et al. | Natural image deblurring based on ringing artifacts removal via knowledge-driven gradient distribution priors | |
Javaran et al. | Blind motion image deblurring using an effective blur kernel prior |