[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Yoon et al., 2018 - Google Patents

Autostereoscopic 3D display system with dynamic fusion of the viewing zone under eye tracking: principles, setup, and evaluation

Yoon et al., 2018

Document ID
5801112717184253615
Author
Yoon K
Kang M
Lee H
Kim S
Publication year
Publication venue
Applied Optics

External Links

Snippet

We study optical technologies for viewer-tracked autostereoscopic 3D display (VTA3D), which provides improved 3D image quality and extended viewing range. In particular, we utilize a technique—the so-called dynamic fusion of viewing zone (DFVZ)—for each 3D …
Continue reading at opg.optica.org (other versions)

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B27/00Other optical systems; Other optical apparatus
    • G02B27/22Other optical systems; Other optical apparatus for producing stereoscopic or other three dimensional effects
    • G02B27/2228Stereoscopes or similar systems based on providing first and second images situated at first and second locations, said images corresponding to parallactically displaced views of the same object, and presenting the first and second images to an observer's left and right eyes respectively
    • G02B27/225Stereoscopes or similar systems based on providing first and second images situated at first and second locations, said images corresponding to parallactically displaced views of the same object, and presenting the first and second images to an observer's left and right eyes respectively of the autostereoscopic type, i.e. left and right images projected to the left and right eyes of an observer who is not required to view the images through optical systems placed adjacent to the eyes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B27/00Other optical systems; Other optical apparatus
    • G02B27/22Other optical systems; Other optical apparatus for producing stereoscopic or other three dimensional effects
    • G02B27/2214Other optical systems; Other optical apparatus for producing stereoscopic or other three dimensional effects involving lenticular arrays or parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic or multiview television systems; Details thereof
    • H04N13/04Picture reproducers
    • H04N13/0402Picture reproducers using an autostereoscopic display, i.e. viewing by the user without the aid of special glasses
    • H04N13/0404Picture reproducers using an autostereoscopic display, i.e. viewing by the user without the aid of special glasses using a lenticular screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic or multiview television systems; Details thereof
    • H04N13/04Picture reproducers
    • H04N13/0402Picture reproducers using an autostereoscopic display, i.e. viewing by the user without the aid of special glasses
    • H04N13/0409Picture reproducers using an autostereoscopic display, i.e. viewing by the user without the aid of special glasses using a parallax barrier, e.g. spatial light modulator
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B27/00Other optical systems; Other optical apparatus
    • G02B27/22Other optical systems; Other optical apparatus for producing stereoscopic or other three dimensional effects
    • G02B27/2264Other optical systems; Other optical apparatus for producing stereoscopic or other three dimensional effects involving time multiplexing, e.g. using sequentially activated left and right shutters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic or multiview television systems; Details thereof
    • H04N13/04Picture reproducers
    • H04N13/0402Picture reproducers using an autostereoscopic display, i.e. viewing by the user without the aid of special glasses
    • H04N13/0418Picture reproducers using an autostereoscopic display, i.e. viewing by the user without the aid of special glasses using an array of controllable light sources or a moving aperture or light source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic or multiview television systems; Details thereof
    • H04N13/04Picture reproducers
    • H04N13/0452Picture reproducers having a monoscopic mode and a separate stereoscopic mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic or multiview television systems; Details thereof
    • H04N13/02Picture signal generators
    • H04N13/0203Picture signal generators using a stereoscopic image camera
    • H04N13/0239Picture signal generators using a stereoscopic image camera having two 2D image pickup sensors representing the interocular distance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic or multiview television systems; Details thereof
    • H04N13/04Picture reproducers
    • H04N13/0429Picture reproducers for viewing by the user with the aid of special glasses or head mounted displays [HMD], i.e. stereoscopic displaying
    • H04N13/0438Picture reproducers for viewing by the user with the aid of special glasses or head mounted displays [HMD], i.e. stereoscopic displaying with temporal multiplexing, i.e. alternatively displaying left and right images separated in time and using glasses to alternatively block the right and left eye
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic or multiview television systems; Details thereof
    • H04N13/04Picture reproducers
    • H04N13/0468Picture reproducers using observer tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic or multiview television systems; Details thereof
    • H04N13/04Picture reproducers
    • H04N13/0445Picture reproducers for displaying more than two geometrical viewpoints without observer tracking, i.e. multiview displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic or multiview television systems; Details thereof
    • H04N13/04Picture reproducers
    • H04N13/0425Calibration aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic or multiview television systems; Details thereof
    • H04N13/04Picture reproducers
    • H04N13/0497Synchronisation or controlling aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic or multiview television systems; Details thereof
    • H04N13/0003Stereoscopic image signal coding, multiplexing, processing, recording or transmission
    • H04N13/0007Processing stereoscopic image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic or multiview television systems; Details thereof
    • H04N13/0003Stereoscopic image signal coding, multiplexing, processing, recording or transmission
    • H04N13/0059Transmission of stereoscopic image signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B3/00Simple or compound lenses

Similar Documents

Publication Publication Date Title
Yoon et al. Autostereoscopic 3D display system with dynamic fusion of the viewing zone under eye tracking: principles, setup, and evaluation
Love et al. High-speed switchable lens enables the development of a volumetric stereoscopic display
Huang et al. High-performance integral-imaging-based light field augmented reality display using freeform optics
Yao et al. Design of an optical see-through light-field near-eye display using a discrete lenslet array
Chou et al. Hybrid light field head-mounted display using time-multiplexed liquid crystal lens array for resolution enhancement
Ravikumar et al. Creating effective focus cues in multi-plane 3D displays
Lee et al. Automotive augmented reality 3D head-up display based on light-field rendering with eye-tracking
Stern et al. Perceivable light fields: Matching the requirements between the human visual system and autostereoscopic 3-D displays
Hiura et al. Measurement of static convergence and accommodation responses to images of integral photography and binocular stereoscopy
Lee et al. Autostereoscopic 3D display using directional subpixel rendering
Kim et al. Hybrid multi-layer displays providing accommodation cues
Song et al. Design of a light-field near-eye display using random pinholes
Yang et al. A crosstalk-suppressed dense multi-view light-field display based on real-time light-field pickup and reconstruction
Wang et al. Demonstration of a low-crosstalk super multi-view light field display with natural depth cues and smooth motion parallax
Jeong et al. Projection-type dual-view three-dimensional display system based on integral imaging
Eldes et al. Multi-view autostereoscopic projection display using rotating screen
Liu et al. Bifocal computational near eye light field displays and structure parameters determination scheme for bifocal computational display
Sun et al. Depth-assisted calibration on learning-based factorization for a compressive light field display
Kang et al. Adaptive viewing distance in super multi-view displays using aperiodic 3-D pixel location and dynamic view indices
Meng et al. Numerical simulation and experimental verification of a dense multi-view full-resolution autostereoscopic 3D-display-based dynamic shutter parallax barrier
Takaki et al. Motion-parallax smoothness of short-, medium-, and long-distance 3D image presentation using multi-view displays
JP4660769B2 (en) Multi-view stereoscopic display device
Kim et al. Analysis of a head-mounted display-type multifocus display system using a laser scanning method
Simon et al. One step closer to a better experience: Analysis of the suitable viewing distance ranges of light field visualization usage contexts for observers with reduced visual capabilities
Park et al. Real-mode depth-fused display with viewer tracking