[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Carpenter et al., 2012 - Google Patents

Mode division multiplexing of modes with the same azimuthal index

Carpenter et al., 2012

Document ID
5751666056393410211
Author
Carpenter J
Thomsen B
Wilkinson T
Publication year
Publication venue
IEEE Photonics Technology Letters

External Links

Snippet

The design of an SLM-based mode demultiplexer is discussed and mode division multiplexing is performed using the LP 0, 1 and LP 0, 2 modes, representing the first demonstration to propagate channels on modes with the same azimuthal index. Mode …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/2935Mach-Zehnder configuration, i.e. comprising separate splitting and combining means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2726Optical coupling means with polarisation selective and adjusting means in or on light guides, e.g. polarisation means assembled in a light guide
    • G02B6/274Optical coupling means with polarisation selective and adjusting means in or on light guides, e.g. polarisation means assembled in a light guide based on light guide birefringence, e.g. due to coupling between light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2706Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B27/00Other optical systems; Other optical apparatus
    • G02B27/28Other optical systems; Other optical apparatus for polarising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters

Similar Documents

Publication Publication Date Title
Carpenter et al. Degenerate mode-group division multiplexing
JP5420765B2 (en) Transverse mode multiplexing for optical communication systems.
Fontaine et al. 30× 30 MIMO transmission over 15 spatial modes
Li et al. Space-division multiplexed high-speed superchannel transmission over few-mode fiber
JP5587467B2 (en) Receiver for optical transverse mode multiplexed signals
Feng et al. All-optical mode-group multiplexed transmission over a graded-index ring-core fiber with single radial mode
WO2014091614A1 (en) Optical device
Fazea et al. 5× 5 25 gbit/s wdm-mdm
Ip et al. 6× 6 MIMO transmission over 50+ 25+ 10 km heterogeneous spans of few-mode fiber with inline erbium-doped fiber amplifier
Ryf et al. Optical coupling components for spatial multiplexing in multi-mode fibers
Chen et al. Demonstration of few-mode compatible optical add/drop multiplexer for mode-division multiplexed superchannel
Carpenter et al. Mode division multiplexing of modes with the same azimuthal index
Ryf et al. Space‐division multiplexing and MIMO processing
Morizur et al. Efficient and mode-selective spatial multiplexer based on multi-plane light conversion
Guan et al. Polarization diversified integrated circuits for orbital angular momentum multiplexing
Shwartz et al. Computer-generated holograms for fiber optical communication with spatial-division multiplexing
Uchida et al. Design and performance of 1× 8 core selective switch supporting 15 cores per port using bundle of three 5-core fibers
Wang et al. 3.36-Tbit/s OAM and wavelength multiplexed transmission over an inverse-parabolic graded index fiber
Fontaine Devices and components for space-division multiplexing in few-mode fibers
Liu et al. Orbital angular momentum data transmission using a silicon photonic mode multiplexer
Ren et al. All-fiber optical mode switching based on cascaded mode selective couplers for short-reach MDM networks
Chen et al. Wavelength selective switch for dynamic VCSEL-based data centers
Chen et al. Wavelength selective switch for commercial multimode fiber supporting 576 spatial channels
Carpenter et al. 2× 56-Gb/s mode-division multiplexed transmission over 2km of OM2 multimode fibre without MIMO equalization
Mori et al. Feasibility demonstration of integrated fractioanal joint switching WSS applicable for few-mode multicore fiber