Farsoni et al., 2013 - Google Patents
A compton-suppressed phoswich detector for gamma spectroscopyFarsoni et al., 2013
View PDF- Document ID
- 5745350557474713972
- Author
- Farsoni A
- Alemayehu B
- Alhawsawi A
- Becker E
- Publication year
- Publication venue
- Journal of Radioanalytical and Nuclear Chemistry
External Links
Snippet
A phoswich detector with two scintillation layers has been designed and assembled at Oregon State University. This detector is able to identify and reject Compton events and ultimately reduce the Compton continuum in gamma energy spectra. In this detector, CsI (Tl) …
- 230000001629 suppression 0 title description 47
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
- G01T1/202—Measuring radiation intensity with scintillation detectors the detector being a crystal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
- G01T1/2006—Measuring radiation intensity with scintillation detectors using a combination of a scintillator and photodetector which measures the means radiation intensity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/17—Circuit arrangements not adapted to a particular type of detector
- G01T1/178—Circuit arrangements not adapted to a particular type of detector for measuring specific activity in the presence of other radioactive substances, e.g. natural, in the air or in liquids such as rain water
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
- G01T1/2018—Scintillation-photodiode combination
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/161—Application in the field of nuclear medicine, e.g. in vivo counting
- G01T1/164—Scintigraphy
- G01T1/1641—Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/29—Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
- G01T1/2914—Measurement of spatial distribution of radiation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/24—Measuring radiation intensity with semiconductor detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/02—Dosimeters
- G01T1/026—Semiconductor dose-rate meters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/02—Dosimeters
- G01T1/10—Luminescent dosimeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/36—Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T3/00—Measuring neutron radiation
- G01T3/06—Measuring neutron radiation with scintillation detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T7/00—Details of radiation-measuring instruments
- G01T7/02—Collecting means for receiving or storing samples to be investigated and possibly directly transporting the samples to the measuring arrangement; particularly for investigating radioactive fluids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V5/00—Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity
- G01V5/0008—Detecting hidden objects, e.g. weapons, explosives
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by transmitting the radiation through the material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V5/00—Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity
- G01V5/02—Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity specially adapted for surface logging, e.g. from aircraft
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by using diffraction of the radiation, e.g. for investigating crystal structure; by using reflection of the radiation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/07—Investigating materials by wave or particle radiation secondary emission
- G01N2223/076—X-ray fluorescence
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2883085B1 (en) | Gamma-ray spectrometer | |
Morishita et al. | Organic scintillator-based alpha/beta detector for radiological decontamination | |
Thomas et al. | Installation of a muon veto for low background gamma spectroscopy at the LBNL low-background facility | |
Farsoni et al. | A compton-suppressed phoswich detector for gamma spectroscopy | |
Sivels et al. | A review of the developments of radioxenon detectors for nuclear explosion monitoring | |
Alemayehu et al. | A well-type phoswich detector for nuclear explosion monitoring | |
Richards et al. | High count rate pulse shape discrimination algorithms for neutron scattering facilities | |
Britton et al. | Monte-Carlo optimisation of a Compton suppression system for use with a broad-energy HPGe detector | |
CN108535758B (en) | Pulse shape discrimination algorithm | |
Czyz et al. | A radioxenon detection system using CdZnTe, an array of SiPMs, and a plastic scintillator | |
Iwanowska et al. | Liquid scintillators and composites in fast neutron detection | |
Farsoni et al. | A system for simultaneous beta and gamma spectroscopy | |
JP2006258755A (en) | ZnS(Ag) SCINTILLATION DETECTOR | |
Scates et al. | Optimization studies of a Compton suppression spectrometer using experimentally validated Monte Carlo simulations | |
Ryzhikov et al. | Multi-layer fast neutron detectors based on composite heavy-oxide scintillators for detection of illegal nuclear materials | |
Popescu et al. | Compton background suppression with a multi-element scintillation detector using high speed data acquisition and digital signal processing | |
Nakamura et al. | Development of a wavelength-shifting-fibre-based scintillator neutron detector as an alternative to 3He at J-PARC/MLF | |
Joseph et al. | Geometry Correction in Efficiency of a Sodium Iodide (Thallium Activated), NaI (Tl) Detector | |
Masse et al. | A Ge NaI (Tl) spectrometer with Compton suppression and gamma coincidence counting. Application to 189Ir and 101Rh activity measurements | |
Ryzhikov et al. | Composite detector for mixed radiations based on CsI (Tl) and dispersions of small ZnSe (Te) crystals | |
EP3444639A1 (en) | Fast neutron detector based on proton recoil detection in a composite scintillator with embedded wavelength-shifting fibers | |
Wang et al. | An entrance window surrounded phoswich design for efficient large-angle Compton-suppressed and low-background GAGG: Ce detector | |
Ryzhikov et al. | The neutron detectors based on oxide scintillators for control of fissionable radioactive substances | |
Pausch et al. | Demonstration of a Dual-Range Photon Detector With SDD and ${\hbox {LaBr}} _ {3}({\hbox {Ce}}^{3+}) $ Scintillator | |
Aryaeinejad et al. | High-resolution Compton-suppressed CZT and LaCl/sub 3/detectors for fission products identification |