[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Zhang et al., 2015 - Google Patents

Diode-pumped SESAM mode-locked Yb: CLNGG laser

Zhang et al., 2015

Document ID
566977097402072592
Author
Zhang Y
Petrov V
Griebner U
Zhang X
Yu H
Zhang H
Liu J
Publication year
Publication venue
Optics & Laser Technology

External Links

Snippet

Pulses as short as 55 fs are generated at 1051.5 nm with the isotropic disordered crystal Yb: CLNGG under diode pumping using SESAM. The bandwidth of~ 23 nm corresponds to almost transform-limited sech 2-shape pulses. The average power in this case of 1% output …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/14Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/14Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/162Solid materials characterised by an active (lasing) ion transition metal
    • H01S3/1625Solid materials characterised by an active (lasing) ion transition metal titanium
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/14Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity
    • H01S3/1063Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity using a solid state device provided with at least one potential jump barrier
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/05Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0619Coatings, e.g. AR, HR, passivation layer
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/05Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/14Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1655Solid materials characterised by a crystal matrix silicate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Pulse generation, e.g. Q-switching, mode locking
    • H01S3/1106Mode locking
    • H01S3/1112Passive mode locking
    • H01S3/1115Passive mode locking using a saturable absorber
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/05Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity using a non-linear optical device, e.g. exhibiting Brillouin- or Raman-scattering
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media

Similar Documents

Publication Publication Date Title
Nie et al. Rare-earth ions-doped mid-infrared (2.7–3 µm) bulk lasers: a review
Halim et al. Passive mode locking of a Nd: KGW laser with hot-band diode pumping
Coutts et al. Cerium-doped fluoride lasers
Zhang et al. Diode-pumped SESAM mode-locked Yb: CLNGG laser
Zong et al. Er: CaF2 single-crystal fiber Q-switched laser with diode pumping in the mid-infrared region
Chen et al. High-power CW and passively Q-switched laser operation of Yb: GdCa4O (BO3) 3 crystal
Schmidt et al. Passive mode-locking of the Yb: CNGG laser
Pan et al. 251 fs pulse generation with a Nd 3+-doped Ca 3 Gd 2 (BO 3) 4 disordered crystal
Liu et al. Spectroscopic and lasing properties of a mixed (Yb, Y, Lu, Gd) calcium oxyborate crystal: Yb0. 19Y0. 34Lu0. 12Gd0. 35Ca4O (BO3) 3
Xu et al. Single-and multi-wavelength Nd: YAlO3 lasers at 1328, 1339 and 1364 nm
Chen et al. Spectroscopic properties and high-power laser operation of Yb0. 14: Y0. 77Gd0. 09Ca4O (BO3) 3 mixed crystal
Wang et al. Graphene-based passive Q-switching of a Dy3+, Tb3+: LuLiF4 yellow laser
Zhang et al. Efficient continuous-wave and passively Q-switched operation of an Yb: YPO4 microchip laser
Gao et al. Diode-pumped self-starting mode-locked femtosecond Yb: YCa4O (BO3) 3 laser
Liu et al. Acousto-optic Q-switched Er: CaF2-SrF2 laser at 2.73 μm
Han et al. Comparative study on passive Q-switching laser properties of Yb: CaWO4 and Yb: NaY (WO4) 2 crystals
Cong et al. LD pumped Nd: Lu2SiO5 passively mode-locked laser with a SESAM
Lin et al. Compact diode-pumped continuous-wave and passively Q-switched Nd: GYSO laser at 1.07 µm
Rudenkov et al. Growth, spectroscopy and high power laser operation of Yb: YAl3 (BO3) 4 crystal: Continuous-wave, mode-locking and chirped pulse regenerative amplification
Suzuki et al. Diode-pumped 88 fs SESAM mode-locked Tm, Ho: CLNGG laser at 2090 nm
Druon et al. New Yb-doped crystals for high-power and ultrashort lasers
Ma et al. High efficiency diode-pumped continues-wave and passively Q-switched Nd: GSAG laser with a two-dimensional WS2 saturable absorber at 1060 nm
Hu et al. Spectroscopic properties and ultrafast performance of Yb: CaLuxGd1− xAlO4 crystal
Luo et al. Diode-pumped passively mode-locked Nd: CLNGG laser
Ricaud et al. Diode-pumped regenerative Yb: SrF 2 amplifier