Hamdi et al., 2016 - Google Patents
A pattern growth-based approach for mining spatiotemporal co-occurrence patternsHamdi et al., 2016
View PDF- Document ID
- 5654943587353145190
- Author
- Hamdi S
- Aydin B
- Angryk R
- Publication year
- Publication venue
- 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW)
External Links
Snippet
Spatiotemporal co-occurrence pattern (STCOP) mining refers to discovering the subsets of event types whose instances frequently co-locate in a spatial context and coincide in a temporal context. STCOP mining is the spatiotemporal extension to Frequent Itemset Mining …
- 238000005065 mining 0 title abstract description 46
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30312—Storage and indexing structures; Management thereof
- G06F17/30321—Indexing structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30386—Retrieval requests
- G06F17/30424—Query processing
- G06F17/30533—Other types of queries
- G06F17/30539—Query processing support for facilitating data mining operations in structured databases
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30943—Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type
- G06F17/30946—Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type indexing structures
- G06F17/30961—Trees
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30587—Details of specialised database models
- G06F17/30595—Relational databases
- G06F17/30598—Clustering or classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30386—Retrieval requests
- G06F17/30424—Query processing
- G06F17/30477—Query execution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30386—Retrieval requests
- G06F17/30389—Query formulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30587—Details of specialised database models
- G06F17/30592—Multi-dimensional databases and data warehouses, e.g. MOLAP, ROLAP
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30587—Details of specialised database models
- G06F17/30589—Hierarchical databases, e.g. IMS, LDAP data stores, Lotus Notes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30943—Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type
- G06F17/30946—Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type indexing structures
- G06F17/30958—Graphs; Linked lists
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30943—Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type
- G06F17/30994—Browsing or visualization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30613—Indexing
- G06F17/30619—Indexing indexing structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30289—Database design, administration or maintenance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30705—Clustering or classification
- G06F17/3071—Clustering or classification including class or cluster creation or modification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Finding probabilistic prevalent colocations in spatially uncertain data sets | |
Garg et al. | Comparing the performance of frequent pattern mining algorithms | |
Navarro et al. | Space-efficient data-analysis queries on grids | |
CN106897374B (en) | Personalized recommendation method based on track big data nearest neighbor query | |
CN105912666A (en) | Method for high-performance storage and inquiry of hybrid structure data aiming at cloud platform | |
Aydin et al. | Spatiotemporal indexing techniques for efficiently mining spatiotemporal co-occurrence patterns | |
Hamdi et al. | A pattern growth-based approach for mining spatiotemporal co-occurrence patterns | |
Mohamed et al. | Efficient mining frequent itemsets algorithms | |
Jiang et al. | Incremental evaluation of top-k combinatorial metric skyline query | |
Singh et al. | Performance Measure of Similis and FPGrowth Algo rithm | |
Bao et al. | Mining non-redundant co-location patterns | |
John et al. | Performance analysis of the past, present and future indexing methods for spatio-temporal data | |
Yasir et al. | D-GENE: deferring the GENEration of power sets for discovering frequent itemsets in sparse big data | |
US20150012563A1 (en) | Data mining using associative matrices | |
Aydin et al. | Mining spatiotemporal co-occurrence patterns in solar datasets | |
Boinski et al. | Collocation pattern mining in a limited memory environment using materialized iCPI-tree | |
Rslan et al. | Spatial R-tree index based on grid division for query processing | |
Li et al. | A novel approach for mining probabilistic frequent itemsets over uncertain data streams | |
Shah et al. | A Collaborative approach of frequent item set mining: a survey | |
CN114357251B (en) | Large-scale graph database query method based on divide-and-conquer evolutionary algorithm | |
Zaki et al. | Frequent Itemset Mining in High Dimensional Data: A Review | |
Kavitha et al. | Efficient transaction reduction in actionable pattern mining for high voluminous datasets based on bitmap and class labels | |
CN113139389B (en) | Graph model semantic query expansion method and device based on dynamic optimization | |
Itkar et al. | An efficient and optimised frequent pattern mining using novel multipath-graph structure | |
Shah et al. | Optimum frequent pattern approach for efficient incremental mining on large databases using Map Reduce |