[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Tsai et al., 2011 - Google Patents

A single-monomer derived linear-like PEI-co-PEG for siRNA delivery and silencing

Tsai et al., 2011

Document ID
5638858495908023303
Author
Tsai L
Chen M
Chien C
Chen M
Lin F
Lin K
Hwu Y
Yang C
Lin S
Publication year
Publication venue
Biomaterials

External Links

Snippet

Polyethylenimines (PEIs) are commonly used as a vehicle to deliver and protect siRNA, but the strong interaction still remains to be modulated for efficient siRNA release and silencing. Herein, a single-monomer derived linear-like PEI-co-PEG (LPEI-co-PEG, P2) was …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives
    • A61K47/48Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates
    • A61K47/48169Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the modifying agent being an organic macromolecular compound, i.e. an oligomeric, polymeric, dendrimeric molecule
    • A61K47/48192Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the modifying agent being an organic macromolecular compound, i.e. an oligomeric, polymeric, dendrimeric molecule the organic macromolecular compound has been obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas, polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • A61K9/5153Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives
    • A61K47/30Macromolecular compounds
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, copolymers of polyalkylene glycol or poloxamer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives
    • A61K47/48Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates
    • A61K47/48769Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form
    • A61K47/48853Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a particulate, powder, adsorbate, bead, sphere
    • A61K47/48876Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a particulate, powder, adsorbate, bead, sphere the form being a solid micro- or nanoparticle having no hollow or gas-filled core
    • A61K47/48884Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a particulate, powder, adsorbate, bead, sphere the form being a solid micro- or nanoparticle having no hollow or gas-filled core the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/48892Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a particulate, powder, adsorbate, bead, sphere the form being a solid micro- or nanoparticle having no hollow or gas-filled core the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives
    • A61K47/48Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates
    • A61K47/48238Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the modifying agent being a protein, peptide, polyamino acid
    • A61K47/48246Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the modifying agent being a protein, peptide, polyamino acid drug-peptide, protein or polyamino acid conjugates, i.e. the modifying agent being a protein, peptide, polyamino acid which being linked/complexed to a molecule that being the pharmacologically or therapeutically active agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/028Polyamidoamines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Similar Documents

Publication Publication Date Title
Tsai et al. A single-monomer derived linear-like PEI-co-PEG for siRNA delivery and silencing
Gao et al. Highly branched poly (β-amino esters) for non-viral gene delivery: High transfection efficiency and low toxicity achieved by increasing molecular weight
Chen et al. Tumor-targeted pH/redox dual-sensitive unimolecular nanoparticles for efficient siRNA delivery
Gao et al. Arginine-chitosan/DNA self-assemble nanoparticles for gene delivery: In vitro characteristics and transfection efficiency
Cao et al. The synergistic effect of hierarchical assemblies of siRNA and chemotherapeutic drugs co-delivered into hepatic cancer cells
Mittal et al. Efficacy of gemcitabine conjugated and miRNA-205 complexed micelles for treatment of advanced pancreatic cancer
Shrestha et al. Endosomal escape and siRNA delivery with cationic shell crosslinked knedel-like nanoparticles with tunable buffering capacities
Kim et al. Introduction of stearoyl moieties into a biocompatible cationic polyaspartamide derivative, PAsp (DET), with endosomal escaping function for enhanced siRNA-mediated gene knockdown
Kim et al. Synthesis and application of poly (ethylene glycol)-co-poly (β-amino ester) copolymers for small cell lung cancer gene therapy
Kim et al. Synthesis and characterization of mannosylated pegylated polyethylenimine as a carrier for siRNA
Du et al. The study of relationships between pKa value and siRNA delivery efficiency based on tri-block copolymers
Debus et al. Delivery of messenger RNA using poly (ethylene imine)–poly (ethylene glycol)-copolymer blends for polyplex formation: Biophysical characterization and in vitro transfection properties
Jiang et al. Aerosol delivery of spermine-based poly (amino ester)/Akt1 shRNA complexes for lung cancer gene therapy
Chen et al. Charge-conversional zwitterionic copolymer as pH-sensitive shielding system for effective tumor treatment
Lin et al. Polycation-detachable nanoparticles self-assembled from mPEG-PCL-g-SS-PDMAEMA for in vitro and in vivo siRNA delivery
Dong et al. Biodegradable mPEG-bP (MCC-g-OEI) copolymers for efficient gene delivery
Zheng et al. Redox-responsive, reversibly-crosslinked thiolated cationic helical polypeptides for efficient siRNA encapsulation and delivery
Wang et al. Balancing polymer hydrophobicity for ligand presentation and siRNA delivery in dual function CXCR4 inhibiting polyplexes
Wang et al. Photoluminescent and biodegradable polycitrate-polyethylene glycol-polyethyleneimine polymers as highly biocompatible and efficient vectors for bioimaging-guided siRNA and miRNA delivery
Adolph et al. Enhanced performance of plasmid DNA polyplexes stabilized by a combination of core hydrophobicity and surface PEGylation
Yi et al. Cyclen-based lipidic oligomers as potential gene delivery vehicles
Xiao et al. Low molecular weight PEI-based fluorinated polymers for efficient gene delivery
Lee et al. RPM peptide conjugated bioreducible polyethylenimine targeting invasive colon cancer
Cao et al. Transfection activity and the mechanism of pDNA-complexes based on the hybrid of low-generation PAMAM and branched PEI-1.8 k
Cao et al. Divalent folate modification on PEG: an effective strategy for improving the cellular uptake and targetability of PEGylated polyamidoamine–polyethylenimine copolymer