[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Im et al., 2009 - Google Patents

A CMOS resistive feedback differential low-noise amplifier with enhanced loop gain for digital TV tuner applications

Im et al., 2009

View PDF
Document ID
5615167787016216507
Author
Im D
Kim H
Lee K
Publication year
Publication venue
IEEE transactions on microwave theory and techniques

External Links

Snippet

A resistive feedback differential low-noise amplifier (LNA) with enhanced loop gain is implemented as a part of a digital TV (DTV) tuner using a 0.18-mum CMOS process. A voltage buffer having higher gain, higher linearity, and lower noise figure (NF) than those of …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45197Pl types
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • H03F3/45188Non-folded cascode stages
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45704Indexing scheme relating to differential amplifiers the LC comprising one or more parallel resonance circuits
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1441Balanced arrangements with transistors using field-effect transistors
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0035Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using continuously variable impedance elements
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/372Noise reduction and elimination in amplifier
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modification of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/22Modification of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively
    • H03F1/223Modification of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively with MOSFET's
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0041Functional aspects of demodulators
    • H03D2200/0088Reduction of intermodulation, nonlinearities, adjacent channel interference; intercept points of harmonics or intermodulation products
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission

Similar Documents

Publication Publication Date Title
Kim et al. A 13-dB IIP3 improved low-power CMOS RF programmable gain amplifier using differential circuit transconductance linearization for various terrestrial mobile D-TV applications
Im et al. A wideband CMOS low noise amplifier employing noise and IM2 distortion cancellation for a digital TV tuner
Im et al. A CMOS active feedback balun-LNA with high IIP2 for wideband digital TV receivers
Yu et al. A compact wideband CMOS low noise amplifier with gain flatness enhancement
Andersson et al. Wideband LNA for a multistandard wireless receiver in 0.18/spl mu/m CMOS
US6674337B2 (en) Concurrent multi-band low noise amplifier architecture
US6271726B1 (en) Wideband, variable gain amplifier
Yoon et al. A highly linear 28GHz 16-element phased-array receiver with wide gain control for 5G NR application
Im et al. A CMOS resistive feedback differential low-noise amplifier with enhanced loop gain for digital TV tuner applications
Aparin et al. Linearization of monolithic LNAs using low-frequency low-impedance input termination
KR100574470B1 (en) Linear mixer circuit with current amplifier
Han et al. A SAW-less receiver front-end employing body-effect control IIP2 calibration
Im et al. A high IIP2 broadband CMOS low-noise amplifier with a dual-loop feedback
Im et al. A low power broadband differential low noise amplifier employing noise and IM3 distortion cancellation for mobile broadcast receivers
Wu et al. A Current-Mode mm-Wave direct-conversion receiver with 7.5 GHz Bandwidth, 3.8 dB minimum noise-figure and+ 1dBm P 1dB, out linearity for high data rate communications
Rajashekharaiah et al. A compact 5.6 GHz low noise amplifier with new on-chip gain controllable active balun
Sato et al. Q-Band InAlGaN/GaN LNA using current reuse topology
US9520833B1 (en) Active ring mixer
KR20070033352A (en) Tunable Circuitry for Neutralization of Third-order Modulation
Masud et al. A 45-dB variable-gain low-noise MMIC amplifier
US11909368B2 (en) Dual mode notch filter
Roopika et al. CMOS based variable gain LNA at V-Band
Sturm et al. A 65nm CMOS Wide-band LNA with Continuously Tunable Gain from 0dB to 24dB
Galal et al. 1–5GHz wideband low noise amplifier using active inductor
Loong et al. 1.575 GHz to 2.48 GHz multi-standard low noise amplifier using 0.18-µm CMOS with on-chip matching