[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Da-Wei et al., 2009 - Google Patents

Structural and electrical properties of Nd ion modified lead zirconate titanate nanopowders and ceramics

Da-Wei et al., 2009

View PDF
Document ID
5450909937400089092
Author
Da-Wei W
De-Qing Z
Jie Y
Quan-Liang Z
Hong-Mei L
Zhi-Ying W
Mao-Sheng C
Publication year
Publication venue
Chinese Physics B

External Links

Snippet

A modified sol-gel method is used for synthesizing Nd ion doped lead zirconate titanate nanopowders Pb 1–3x/2 Nd x Zr 0.52 Ti 0.48 O 3 (PNZT) in an ethylene glycol system with zirconium nitrate as zirconium source. The results show that it is critical to add lead acetate …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tatalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates, e.g. titanates of two or more metals other than titanium

Similar Documents

Publication Publication Date Title
Mgbemere et al. Electrical and structural characterization of (KxNa1− x) NbO3 ceramics modified with Li and Ta
Wang et al. Enhancement of dielectric and piezoelectric properties of M0. 5Bi4. 5Ti4O15 (M= Na, K, Li) ceramics by Ce doping
Feng et al. Phase formation and characterization of high Curie temperature xBiYbO3–(1− x) PbTiO3 piezoelectric ceramics
Da-Wei et al. Structural and electrical properties of Nd ion modified lead zirconate titanate nanopowders and ceramics
Yoon et al. Phase-formation, microstructure, and piezoelectric/dielectric properties of BiYO3-doped Pb (Zr0. 53Ti0. 47) O3 for piezoelectric energy harvesting devices
Inaguma et al. High pressure synthesis, lattice distortion, and dielectric properties of a perovskite Bi (Ni 1/2 Ti 1/2) O 3
Mirzaei et al. Effect of Nb doping on sintering and dielectric properties of PZT ceramics
Feng et al. Phase diagram and phase transitions in the relaxor ferroelectric Pb (Fe2/3W1/3) O3–PbTiO3 system
Li et al. Improved ferroelectric and piezoelectric properties of (Na 0. 5 K 0. 5) NbO3 ceramics via sintering in low oxygen partial pressure atmosphere and adding LiF
Badapanda et al. Structure and dielectric properties of bismuth sodium titanate ceramic prepared by auto-combustion technique
Ge et al. Facile synthesis and high d 33 of single-crystalline KNbO 3 nanocubes
Pang et al. A lead-reduced ferrolectric solid solution with high curie temperature: BiScO3–Pb (Zn1/3Nb2/3) O3–PbTiO3
Feng et al. Phase structure and piezoelectric properties of high Curie temperature BiYbO3–PbTiO3–BaTiO3 ceramics
Li et al. Study on properties of tantalum-doped La 2 Ti 2 O 7 ferroelectric ceramics
Tinti et al. Low-temperature synthesis of bismuth titanate by modified citrate amorphous method
Goudarzi et al. PZT ceramics prepared through a combined method of B-site precursor and wet mechanically activated calcinate in a planetary ball mill
Cortés et al. Influence of the sintering temperature on ferroelectric properties of potassium-sodium niobate piezoelectric ceramics
Kumar et al. Structural and electrical properties of double doped (Fe3+ and Ba2+) PZT electroceramics
Kornphom et al. Phase structures, PPT region and electrical properties of new lead-free KNLNTS-BCTZ ceramics fabricated via the solid-state combustion technique
de la Rubia et al. Phase transitions in PbTi x Hf 1-x O 3 determined by thermal analysis and impedance spectroscopy
Mahmud et al. Effects of Fe 2 O 3 addition on the piezoelectric and the dielectric properties of 0.99 Pb (Zr 0.53 Ti 0.47) O 3-0.01 Bi (Y 1− x Fe x) O 3 ceramics for energy-harvesting devices
Wang et al. Structure and electrical properties of La2O3-doped (K, Na, Li)(Nb, Ta) O3-(Bi, Na) TiO3 ceramics
Xia et al. Structural phase transition behaviour and electrical properties of Pb (Mg1/3Nb2/3) O3–PbTiO3–PbZrO3 ceramics
Shan et al. Ionic doping effects on crystal structure and relaxation character in Bi0. 5Na0. 5TiO3 ferroelectric ceramics
Mgbemere et al. Effect of antimony substitution for niobium on the crystal structure, piezoelectric and dielectric properties of (K 0.5 Na 0.5) NbO 3 ceramics