[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Liu et al., 2019 - Google Patents

CCGA: clustering and capturing group activities for DGA-based botnets detection

Liu et al., 2019

Document ID
5425952049004660600
Author
Liu Z
Yun X
Zhang Y
Wang Y
Publication year
Publication venue
2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE)

External Links

Snippet

Botnet is a part of the most destructive threats to network security and is often used in malicious activities. DGA-based botnet, which uses Domain Generation Algorithm (DGA) to evade detection, has become the main channel to carry out online crimes. In the past, many …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/56Computer malware detection or handling, e.g. anti-virus arrangements
    • G06F21/562Static detection
    • G06F21/563Static detection by source code analysis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1408Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
    • H04L63/1425Traffic logging, e.g. anomaly detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1408Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
    • H04L63/1416Event detection, e.g. attack signature detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1441Countermeasures against malicious traffic
    • H04L63/1458Denial of Service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1441Countermeasures against malicious traffic
    • H04L63/145Countermeasures against malicious traffic the attack involving the propagation of malware through the network, e.g. viruses, trojans or worms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1441Countermeasures against malicious traffic
    • H04L63/1483Countermeasures against malicious traffic service impersonation, e.g. phishing, pharming or web spoofing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/316User authentication by observing the pattern of computer usage, e.g. typical user behaviour
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/552Detecting local intrusion or implementing counter-measures involving long-term monitoring or reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1441Countermeasures against malicious traffic
    • H04L63/1491Countermeasures against malicious traffic using deception as countermeasure, e.g. honeypots, honeynets, decoys or entrapment
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/554Detecting local intrusion or implementing counter-measures involving event detection and direct action
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1433Vulnerability analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/82Protecting input, output or interconnection devices
    • G06F21/83Protecting input, output or interconnection devices input devices, e.g. keyboards, mice or controllers thereof

Similar Documents

Publication Publication Date Title
Van Ede et al. Deepcase: Semi-supervised contextual analysis of security events
Sun et al. {HinDom}: A robust malicious domain detection system based on heterogeneous information network with transductive classification
Chen et al. Practical attacks against graph-based clustering
Vinayakumar et al. Scalable framework for cyber threat situational awareness based on domain name systems data analysis
Gardiner et al. On the security of machine learning in malware c&c detection: A survey
Khalil et al. Discovering malicious domains through passive DNS data graph analysis
Nelms et al. {ExecScent}: Mining for New {C&C} Domains in Live Networks with Adaptive Control Protocol Templates
Stevanovic et al. Detection of malicious and non-malicious website visitors using unsupervised neural network learning
Bilge et al. EXPOSURE: Finding Malicious Domains Using Passive DNS Analysis.
JP7302019B2 (en) Hierarchical Behavior Modeling and Detection Systems and Methods for System-Level Security
EP3905624B1 (en) Botnet domain name family detecting method, device, and storage medium
Niu et al. Identifying APT malware domain based on mobile DNS logging
US10425436B2 (en) Identifying bulletproof autonomous systems
Zago et al. Scalable detection of botnets based on DGA: efficient feature discovery process in machine learning techniques
Tong et al. A method for detecting DGA botnet based on semantic and cluster analysis
US20230095415A1 (en) Helper agent and system
Liu et al. CCGA: clustering and capturing group activities for DGA-based botnets detection
Lin et al. Collaborative alert ranking for anomaly detection
Dodia et al. Exposing the rat in the tunnel: Using traffic analysis for tor-based malware detection
Nguyen et al. DGA botnet detection using collaborative filtering and density-based clustering
Lazar et al. IMDoC: identification of malicious domain campaigns via DNS and communicating files
Monshizadeh et al. Security related data mining
Zang et al. Attack scenario reconstruction via fusing heterogeneous threat intelligence
Wu et al. GroupTracer: Automatic attacker TTP profile extraction and group cluster in Internet of things
Wang et al. HANDOM: Heterogeneous attention network model for malicious domain detection