Komarova et al., 2012 - Google Patents
Synthesis of pentasaccharides corresponding to the glycoform II of the outer core region of the Pseudomonas aeruginosa lipopolysaccharideKomarova et al., 2012
- Document ID
- 5337773676322586856
- Author
- Komarova B
- Tsvetkov Y
- Pier G
- Nifantiev N
- Publication year
- Publication venue
- Carbohydrate research
External Links
Snippet
Cystic fibrosis (CF) is a congenital disease caused by a mutation in a gene responsible for the synthesis of a membrane protein called the cystic fibrosis transmembrane conductance regulator (CFTR). Resistance to Pseudomonas aeruginosa infection is closely related to the …
- 230000015572 biosynthetic process 0 title abstract description 23
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/02—Acyclic radicals, not substituted by cyclic structures
- C07H15/04—Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
- C07H15/10—Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical containing unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H13/00—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
- C07H13/02—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
- C07H13/04—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals attached to acyclic carbon atoms
- C07H13/06—Fatty acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/20—Carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/18—Acyclic radicals, substituted by carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H17/00—Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
- C07H17/04—Heterocyclic radicals containing only oxygen as ring hetero atoms
- C07H17/08—Hetero rings containing eight or more ring members, e.g. erythromycins
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/26—Acyclic or carbocyclic radicals, substituted by hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H5/00—Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium
- C07H5/08—Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium to sulfur, selenium or tellurium
- C07H5/10—Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium to sulfur, selenium or tellurium to sulfur
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H3/00—Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
- C07H3/04—Disaccharides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/44—Preparation of O-glycosides, e.g. glucosides
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Komarova et al. | Is an acyl group at O-3 in glucosyl donors able to control α-stereoselectivity of glycosylation? The role of conformational mobility and the protecting group at O-6 | |
Komarova et al. | Synthesis of pentasaccharides corresponding to the glycoform II of the outer core region of the Pseudomonas aeruginosa lipopolysaccharide | |
Hodosi et al. | Glycosylation via locked anomeric configuration: stereospecific synthesis of oligosaccharides containing the β-d-mannopyranosyl and β-l-rhamnopyranosyl linkage | |
Sherman et al. | Synthesis of Neu5Ac-and Neu5Gc-α-(2→ 6′)-lactosamine 3-aminopropyl glycosides | |
Zeng et al. | Remote control of α-or β-stereoselectivity in (1→ 3)-glucosylations in the presence of a C-2 ester capable of neighboring-group participation | |
Podvalnyy et al. | Stereoselective sialylation with O-trifluoroacetylated thiosialosides: hydrogen bonding involved? | |
Sun et al. | Synthesis of a typical N-acetylglucosamine-containing saponin, oleanolic acid 3-yl α-l-arabinopyranosyl-(1→ 2)-α-l-arabinopyranosyl-(1→ 6)-2-acetamido-2-deoxy-β-d-glucopyranoside | |
Yashunsky et al. | Synthesis of 3-aminopropyl glycoside of branched β-(1→ 3)-D-glucooctaoside | |
Chen et al. | Synthesis of a tetrasaccharide substrate of heparanase | |
Komarova et al. | Synthesis of a common trisaccharide fragment of glycoforms of the outer core region of the Pseudomonas aeruginosa lipopolysaccharide | |
Ma et al. | Synthesis of oligosaccharide fragments of the rhamnogalacturonan of Nerium indicum | |
Alex et al. | A versatile approach to the synthesis of glycans containing mannuronic acid residues | |
Karelin et al. | Synthesis of a heptasaccharide fragment of the mannan from Candida guilliermondii cell wall and its conjugate with BSA | |
Du et al. | An efficient and concise regioselective synthesis of α-(1→ 5)-linked L-arabinofuranosyl oligosaccharides | |
Bartek et al. | Synthesis of a neoglycoprotein containing the Lewis X analogous trisaccharide β-d-GalpNAc-(1→ 4)[α-L-Fucp-(1→ 3)]-β-d-GlcpNAc | |
Yamamura et al. | Synthetic studies on glycosphingolipids from Protostomia phyla: total syntheses of glycosphingolipids from the parasite, Echinococcus multilocularis | |
Wang et al. | First synthesis of β-d-Galf-(1→ 3)-d-Galp—the repeating unit of the backbone structure of the O-antigenic polysaccharide present in the lipopolysaccharide (LPS) of the genus Klebsiella | |
Hada et al. | Synthetic studies on glycosphingolipids from the parasite Echinococcus multilocularis | |
Gu et al. | Synthesis of Leonosides E and F derived from Leonurus japonicas Houtt | |
Takato et al. | Chemical synthesis of diglucosyl diacylglycerols utilizing glycosyl donors with stereodirecting cyclic silyl protective groups | |
Zhao et al. | Stereoselective synthesis of a branched α-decaglucan | |
Di Brisco et al. | Development of a fluorescent probe for the study of the sponge-derived simplexide immunological properties | |
Miyashita et al. | Synthesis of neosaponins and neoglycolipids containing a chacotriosyl moiety | |
Plé | Synthesis of the trisaccharide portion of soyasaponin βg: evaluation of a new glucuronic acid acceptor | |
van Dorst et al. | Synthesis of Hexp-(1→ 4)-β-d-GlcpNac-(1→ 2)-α-d-Manp-(1→ O)(CH2) 7CH3 probes for exploration of the substrate specificity of glycosyltransferases: Part II, Hex= 3-O-methyl-β-d-Gal, 3-deoxy-β-d-Gal, 3-deoxy-3-fluoro-β-d-Gal, 3-amino-3-deoxy-β-d-Gal, β-d-Gul, α-l-Alt, or β-l-Gal |