Wang et al., 2005 - Google Patents
Synthesis and properties of new orange red light‐emitting hyperbranched and linear polymers derived from 3, 5‐dicyano‐2, 4, 6‐tristyrylpyridineWang et al., 2005
- Document ID
- 530657158357279834
- Author
- Wang H
- Li Z
- Jiang Z
- Liang Y
- Wang H
- Qin J
- Yu G
- Liu Y
- Publication year
- Publication venue
- Journal of Polymer Science Part A: Polymer Chemistry
External Links
Snippet
Two new orange red light‐emitting hyperbranched and linear polymers, poly (pyridine phenylene) s P1 and P2, were prepared by the Heck coupling reaction. In particular, an A2+ B3 approach was developed to synthesize conjugated hyperbranched polymer P2 via one …
- 229920000642 polymer 0 title abstract description 60
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0034—Organic polymers or oligomers
- H01L51/0035—Organic polymers or oligomers comprising aromatic, heteroaromatic, or arrylic chains, e.g. polyaniline, polyphenylene, polyphenylene vinylene
- H01L51/0038—Poly-phenylenevinylene and derivatives
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0034—Organic polymers or oligomers
- H01L51/0043—Copolymers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/005—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
- H01L51/0062—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene aromatic compounds comprising a hetero atom, e.g.: N,P,S
- H01L51/0071—Polycyclic condensed heteroaromatic hydrocarbons
- H01L51/0072—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ringsystem, e.g. phenanthroline, carbazole
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0077—Coordination compounds, e.g. porphyrin
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/50—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
- H01L51/5012—Electroluminescent [EL] layer
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/14—Macromolecular compounds
- C09K2211/1441—Heterocyclic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/54—Material technologies
- Y02E10/549—Material technologies organic PV cells
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tamilavan et al. | Synthesis and characterization of indenofluorene‐based copolymers containing 2, 5‐bis (2‐thienyl)‐N‐arylpyrrole for bulk heterojunction solar cells and polymer light‐emitting diodes | |
Lee et al. | Enhanced efficiency of polyfluorene derivatives: Organic–inorganic hybrid polymer light‐emitting diodes | |
Wang et al. | Backbone‐acceptor/pendant‐donor strategy for efficient thermally activated delayed fluorescence conjugated polymers with external quantum efficiency close to 25% and emission peak at 608 nm | |
Lo et al. | Synthesis and electroluminescence properties of white‐light single polyfluorenes with high‐molecular weight by click reaction | |
Chen et al. | Synthesis and characterization of a new series of blue fluorescent 2, 6-linked 9, 10-diphenylanthrylenephenylene copolymers and their application for polymer light-emitting diodes | |
Lim et al. | Improved EL efficiency of fluorene‐thieno [3, 2‐b] thiophene‐based conjugated copolymers with hole‐transporting or electron‐transporting units in the main chain | |
Wu et al. | Synthesis and optical and electrochemical properties of novel copolymers containing alternating 2, 3‐divinylquinoxaline and hole‐transporting units | |
Zhuang et al. | High‐efficiency, electrophosphorescent polymers with porphyrin–platinum complexes in the conjugated backbone: Synthesis and device performance | |
Kim et al. | Synthesis and characterization of poly (fluorene)‐based copolymer containing triphenylamine group | |
Mikroyannidis et al. | New poly (p‐phenylene vinylene) derivatives with two oxadiazole rings per repeat unit: Synthesis, photophysical properties, electroluminescence, and metal ion recognition | |
Li et al. | Novel saturated red‐emitting poly (p‐phenylenevinylene) copolymers with narrow‐band‐gap units of 2, 1, 3‐benzothiadiazole synthesized by a palladium‐catalyzed Stille coupling reaction | |
Jeong et al. | Synthesis and characterization of indeno [1, 2‐b] fluorene‐based white light‐emitting copolymer | |
Wu et al. | Bipolar copoly (aryl ether) containing distyrylbenzene, triphenylamine, and 1, 2, 4‐triazole moieties: Synthesis and optoelectronic properties | |
Wang et al. | Stable and good color purity white light‐emitting devices based on random fluorene/spirofluorene copolymers doped with iridium complex | |
Liu et al. | Highly efficient red electroluminescent polymers with dopant/host system and molecular dispersion feature: polyfluorene as the host and 2, 1, 3-benzothiadiazole derivatives as the red dopant | |
Hsieh et al. | Synthesis, photophysics, and electroluminescence of copolyfluorenes containing DCM derivatives | |
Tsai et al. | Hyperbranched luminescent polyfluorenes containing aromatic triazole branching units | |
Kyu Lee et al. | White electroluminescence from a single polyfluorene containing bis‐DCM units | |
Wang et al. | Synthesis and properties of new orange red light‐emitting hyperbranched and linear polymers derived from 3, 5‐dicyano‐2, 4, 6‐tristyrylpyridine | |
Peng et al. | New series of highly phenyl‐substituted polyfluorene derivatives for polymer light‐emitting diodes | |
Liu et al. | Synthesis and optoelectronic properties of silole‐containing polyfluorenes with binary structures | |
Peng et al. | New polyphenylene‐and polyphenylenevinylene‐based copolymers containing triarylpyrazoline units in the main chains | |
Song et al. | Synthesis and characterization of polyfluorenevinylene with cyano group and carbazole unit | |
Chien et al. | White electroluminescence from a single polymer: A blue‐emitting polyfluorene incorporating orange‐emitting benzoselenadiazole segments on its main chain | |
Yoon et al. | Synthesis and characterization of fluorene‐based copolymers containing benzothiadiazole derivative for light‐emitting diodes applications |