de Barros et al., 2022 - Google Patents
Performance of polar codes over generalized correlated fading channelsde Barros et al., 2022
View PDF- Document ID
- 5272609674012505465
- Author
- de Barros F
- de Oliveira F
- Alcoforado M
- Lopes W
- Publication year
- Publication venue
- Journal of Communication and Information Systems
External Links
Snippet
Polar coding, as introduced by Arikan in 2009, is an error correcting code scheme that uses the polarization technique to obtain almost noise-free channels that are suitable for transmission. Polar codes are being widely studied due to their applications on the 5th …
- 238000005562 fading 0 title abstract description 100
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0045—Arrangements at the receiver end
- H04L1/0047—Decoding adapted to other signal detection operation
- H04L1/005—Iterative decoding, including iteration between signal detection and decoding operation
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/11—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
- H03M13/1102—Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
- H03M13/1105—Decoding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03178—Arrangements involving sequence estimation techniques
- H04L25/03248—Arrangements for operating in conjunction with other apparatus
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0057—Block codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0045—Arrangements at the receiver end
- H04L1/0055—MAP-decoding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0041—Arrangements at the transmitter end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/65—Purpose and implementation aspects
- H03M13/6522—Intended application, e.g. transmission or communication standard
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/37—Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
- H03M13/39—Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
- H03M13/41—Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/37—Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
- H03M13/39—Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
- H03M13/3905—Maximum a posteriori probability [MAP] decoding and approximations thereof based on trellis or lattice decoding, e.g. forward-backward algorithm, log-MAP decoding, max-log-MAP decoding; MAP decoding also to be found in H04L1/0055
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/63—Joint error correction and other techniques
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cammerer et al. | Trainable communication systems: Concepts and prototype | |
Chi et al. | Practical MIMO-NOMA: Low complexity and capacity-approaching solution | |
US9831895B2 (en) | System and method for a message passing algorithm | |
Vangala et al. | A comparative study of polar code constructions for the AWGN channel | |
Fang et al. | Design of distributed protograph LDPC codes for multi-relay coded-cooperative networks | |
Dai et al. | Polar-coded MIMO systems | |
CN107864029A (en) | A kind of method for reducing Multiuser Detection complexity | |
Zheng et al. | LDPC-coded MIMO systems with unknown block fading channels: soft MIMO detector design, channel estimation, and code optimization | |
Han et al. | A high performance joint detection and decoding scheme for LDPC coded SCMA system | |
da Silva et al. | Threshold-based edge selection MPA for SCMA | |
Khan et al. | Evaluation of channel coding techniques for massive machine-type communication in 5G cellular network | |
Ahmed et al. | Performance evaluation of serial and parallel concatenated channel coding scheme with non-orthogonal multiple access for 6g networks | |
Suthisopapan et al. | Achieving near capacity of non-binary LDPC coded large MIMO systems with a novel ultra low-complexity soft-output detector | |
de Barros et al. | Performance of polar codes over generalized correlated fading channels | |
Chen et al. | Memory AMP for generalized MIMO: Coding principle and information-theoretic optimality | |
Wen et al. | Joint sparse graph over GF (q) for code division multiple access systems | |
Meng et al. | A universal receiver for uplink noma systems | |
Azmi et al. | Multichannel cooperative spectrum sensing that integrates channel decoding with fusion-based decision | |
Ren et al. | Enhanced turbo detection for SCMA based on information reliability | |
Xu et al. | Shortened turbo product codes: encoding design and decoding algorithm | |
Prayogo et al. | Evaluation of LDPC code and polar code coding scheme in 5G technology–massive machine type communication | |
Pan et al. | A new importance sampling algorithm for fast simulation of linear block codes over BSCs | |
Ratzer | Error-correction on non-standard communication channels | |
Dizdar et al. | An uplink non-orthogonal multiple access method based on frozen bit patterns of polar codes | |
Li et al. | Knowledge‐aided iterative detection and decoding for multiuser multiple‐antenna systems |