Huang et al., 2014 - Google Patents
Morphology evolution and impurity analysis of LiFePO 4 nanoparticles via a solvothermal synthesis processHuang et al., 2014
View PDF- Document ID
- 5277626237019432633
- Author
- Huang X
- He X
- Jiang C
- Tian G
- Publication year
- Publication venue
- Rsc Advances
External Links
Snippet
A solvothermal method is applied for synthesizing LiFePO4 nanoparticles using ethylene glycol as solvent. Crystals are obtained with quite different morphologies at solutions of various acidity prepared via changing the primary LiOH/H3PO4 mole ratios. SEM, TEM, and …
- 239000012535 impurity 0 title abstract description 41
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
- H01M4/5825—Oxygenated metallic slats or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Huang et al. | Morphology evolution and impurity analysis of LiFePO 4 nanoparticles via a solvothermal synthesis process | |
Chen et al. | Co 9 S 8 embedded into N/S doped carbon composites: in situ derivation from a sulfonate-based metal–organic framework and its electrochemical properties | |
Wang et al. | High‐voltage LiNi0. 45Cr0. 1Mn1. 45O4 cathode with superlong cycle performance for wide temperature lithium‐ion batteries | |
Xu et al. | Improved electrochemical performance of Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 by Mg doping for lithium ion battery cathode material | |
Hai et al. | The effect of particle surface facets on the kinetic properties of LiMn 1.5 Ni 0.5 O 4 cathode materials | |
Xu et al. | Mitigating capacity fade by constructing highly ordered mesoporous Al 2 O 3/polyacene double-shelled architecture in Li-rich cathode materials | |
Zhou et al. | The enhanced rate performance of LiFe 0.5 Mn 0.5 PO 4/C cathode material via synergistic strategies of surfactant-assisted solid state method and carbon coating | |
Zhang et al. | Self-adjusted oxygen-partial-pressure approach to the improved electrochemical performance of electrode Li [Li 0.14 Mn 0.47 Ni 0.25 Co 0.14] O 2 for lithium-ion batteries | |
Pei et al. | Enhanced performance of LiFePO4 through hydrothermal synthesis coupled with carbon coating and cupric ion doping | |
Sun et al. | Investigations on Zr incorporation into Li 3 V 2 (PO 4) 3/C cathode materials for lithium ion batteries | |
JP6519202B2 (en) | Lithium titanate powder, active material, and storage device using the same | |
Song et al. | CuGaS 2 nanoplates: a robust and self-healing anode for Li/Na ion batteries in a wide temperature range of 268–318 K | |
Li et al. | General synthesis of x Li 2 MnO 3·(1− x) LiNi 1/3 Co 1/3 Mn 1/3 O 2 (x= 1/4, 1/3, and 1/2) hollow microspheres towards enhancing the performance of rechargeable lithium ion batteries | |
Fu et al. | A LiPF 6-electrolyte-solvothermal route for the synthesis of LiF/Li x PF y O z-coated Li-rich cathode materials with enhanced cycling stability | |
Hu et al. | Li 2 MnSiO 4@ C nanocomposite as a high-capacity cathode material for Li-ion batteries | |
Wan et al. | Ni/Mn ratio and morphology-dependent crystallographic facet structure and electrochemical properties of the high-voltage spinel LiNi 0.5 Mn 1.5 O 4 cathode material | |
Li et al. | Structure and electrochemical performance modulation of a LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode material by anion and cation co-doping for lithium ion batteries | |
Jiang et al. | High performance LiFePO 4 microsphere composed of nanofibers with an alcohol-thermal approach | |
KR101550956B1 (en) | Metal-doped cathode active material | |
Chen et al. | Influence of integrated microstructure on the performance of LiNi 0.8 Co 0.15 Al 0.05 O 2 as a cathodic material for lithium ion batteries | |
Gao et al. | Enhanced structural stability and overall conductivity of Li-rich layered oxide materials achieved by a dual electron/lithium-conducting coating strategy for high-performance lithium-ion batteries | |
Guo et al. | Molten salt synthesis of nano-sized Li 4 Ti 5 O 12 doped with Fe 2 O 3 for use as anode material in the lithium-ion battery | |
Gan et al. | Synthesis and electrochemical performance of nano TiO 2 (B)-coated Li [Li 0.2 Mn 0.54 Co 0.13 Ni 0.13] O 2 cathode materials for lithium-ion batteries | |
Li et al. | One-time sintering process to synthesize ZrO 2-coated LiMn 2 O 4 materials for lithium-ion batteries | |
Chen et al. | Role of Al-doping with different sites upon the structure and electrochemical performance of spherical LiNi 0.5 Mn 1.5 O 4 cathode materials for lithium-ion batteries |