[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Tang et al., 2017 - Google Patents

Effect of the deformation state on the response of a flexible H 2 S sensor based on a Ph5T2 single-crystal transistor

Tang et al., 2017

Document ID
5200725943134277566
Author
Tang K
Song Z
Tang Q
Tian H
Tong Y
Liu Y
Publication year
Publication venue
IEEE Electron Device Letters

External Links

Snippet

Flexible H 2 S sensors were fabricated based on ultrathin dinaphtho [3, 4-d: 3', 4'-d'] benzo [1, 2-b: 4, 5b'] dithiophene (Ph5T2) single-crystal organic field-effect transistors, and response performances at different deformation states were investigated. The flexible …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/05Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture
    • H01L51/0504Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or swiched, e.g. three-terminal devices
    • H01L51/0508Field-effect devices, e.g. TFTs
    • H01L51/0512Field-effect devices, e.g. TFTs insulated gate field effect transistors
    • H01L51/0545Lateral single gate single channel transistors with inverted structure, i.e. the organic semiconductor layer is formed after the gate electrode
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/05Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture
    • H01L51/0504Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or swiched, e.g. three-terminal devices
    • H01L51/0508Field-effect devices, e.g. TFTs
    • H01L51/0512Field-effect devices, e.g. TFTs insulated gate field effect transistors
    • H01L51/0516Field-effect devices, e.g. TFTs insulated gate field effect transistors characterised by the gate dielectric
    • H01L51/0529Field-effect devices, e.g. TFTs insulated gate field effect transistors characterised by the gate dielectric the gate dielectric having a multilayered structure
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/05Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture
    • H01L51/0504Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or swiched, e.g. three-terminal devices
    • H01L51/0508Field-effect devices, e.g. TFTs
    • H01L51/0512Field-effect devices, e.g. TFTs insulated gate field effect transistors
    • H01L51/0541Lateral single gate single channel transistors with non inverted structure, i.e. the organic semiconductor layer is formed before the gate electode
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0045Carbon containing materials, e.g. carbon nanotubes, fullerenes
    • H01L51/0048Carbon nanotubes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/005Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
    • H01L51/0052Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0001Processes specially adapted for the manufacture or treatment of devices or of parts thereof
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/50Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];

Similar Documents

Publication Publication Date Title
Tang et al. Effect of the deformation state on the response of a flexible H 2 S sensor based on a Ph5T2 single-crystal transistor
Jeong et al. The response characteristics of a gas sensor based on poly-3-hexylithiophene thin-film transistors
Huang et al. Polymer dielectric layer functionality in organic field-effect transistor based ammonia gas sensor
Li et al. Copper phthalocyanine thin film transistors for hydrogen sulfide detection
Yu et al. Ammonia gas sensor based on pentacene organic field-effect transistor
Li et al. Flexible ammonia sensor based on PEDOT: PSS/silver nanowire composite film for meat freshness monitoring
Kimura et al. Soluble Organic Semiconductor Precursor with Specific Phase Separation for High‐Performance Printed Organic Transistors
Rajeev et al. Ammonia gas detection using field-effect transistor based on a solution-processable organic semiconductor
Meng et al. Solution-sheared ultrathin films for highly-sensitive ammonia detection using organic thin-film transistors
Nketia-Yawson et al. Organic thin film transistor with conjugated polymers for highly sensitive gas sensors
Sahu et al. Air-stable vapor phase sensing of ammonia in sub-threshold regime of poly (2, 5-bis (3-tetradecylthiophen-2yl) thieno (3, 2-b) thiophene) based polymer thin-film transistor
Han et al. Performance improvement of organic field-effect transistor ammonia gas sensor using ZnO/PMMA hybrid as dielectric layer
Li et al. Molecular orientation and interface compatibility for high performance organic thin film transistor based on vanadyl phthalocyanine
Abthagir et al. Studies of tetracene-and pentacene-based organic thin-film transistors fabricated by the neutral cluster beam deposition method
Zhang et al. Sorting semiconducting single walled carbon nanotubes by poly (9, 9-dioctylfluorene) derivatives and application for ammonia gas sensing
Liu et al. Self‐assembled core‐shell structured organic nanofibers fabricated by single‐nozzle electrospinning for highly sensitive ammonia sensors
KR20130036719A (en) Thin-film transistors for chemical sensor applications
KR101814287B1 (en) Transistor for sensing ammonia gas and sensing sensor using the same
Tremblay et al. Digital‐Inverter Amine Sensing via Synergistic Responses by n and p Organic Semiconductors
Wang et al. Flexible organic single-crystal field-effect transistor for ultra-sensitivity strain sensing
Rockson et al. Engineering asymmetric charge injection/extraction to optimize organic transistor performances
EP1617484A1 (en) Field effect transistor, electrical device array and method for manufacturing those
Shin et al. Highly reliable organic field-effect transistors with molecular additives for a high-performance printed gas sensor
Song et al. Controllable gas selectivity at room temperature based on Ph5T2-modified CuPc nanowire field-effect transistors
Zhao et al. Highly sensitive H2S sensors based on ultrathin organic single-crystal microplate transistors