Sakaguchi et al., 2019 - Google Patents
Programmability and Performance of New Global-View Programming API for Multi-Node and Multi-Core ProcessingSakaguchi et al., 2019
View PDF- Document ID
- 5207588987992141594
- Author
- Sakaguchi Y
- Midorikawa H
- Publication year
- Publication venue
- 2019 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM)
External Links
Snippet
Various partitioned global address space (PGAS) languages capable of providing global- view programming environments on multi-node computer systems have been proposed to improve programming productivity in high-performance computing. However, several PGAS …
- 238000003672 processing method 0 abstract description 2
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5061—Partitioning or combining of resources
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformations of program code
- G06F8/41—Compilation
- G06F8/45—Exploiting coarse grain parallelism in compilation, i.e. parallelism between groups of instructions
- G06F8/456—Parallelism detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/30003—Arrangements for executing specific machine instructions
- G06F9/30007—Arrangements for executing specific machine instructions to perform operations on data operands
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline, look ahead
- G06F9/3885—Concurrent instruction execution, e.g. pipeline, look ahead using a plurality of independent parallel functional units
- G06F9/3889—Concurrent instruction execution, e.g. pipeline, look ahead using a plurality of independent parallel functional units controlled by multiple instructions, e.g. MIMD, decoupled access or execute
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformations of program code
- G06F8/41—Compilation
- G06F8/44—Encoding
- G06F8/443—Optimisation
- G06F8/4441—Reducing the execution time required by the program code
- G06F8/4442—Reducing the number of cache misses; Data prefetching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/34—Addressing or accessing the instruction operand or the result; Formation of operand address; Addressing modes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/54—Interprogramme communication; Intertask communication
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/52—Programme synchronisation; Mutual exclusion, e.g. by means of semaphores; Contention for resources among tasks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformations of program code
- G06F8/41—Compilation
- G06F8/43—Checking; Contextual analysis
- G06F8/436—Semantic checking
- G06F8/437—Type checking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/44—Arrangements for executing specific programmes
- G06F9/4421—Execution paradigms
- G06F9/4428—Object-oriented
- G06F9/443—Object-oriented method invocation or resolution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/16—Combinations of two or more digital computers each having at least an arithmetic unit, a programme unit and a register, e.g. for a simultaneous processing of several programmes
- G06F15/163—Interprocessor communication
- G06F15/173—Interprocessor communication using an interconnection network, e.g. matrix, shuffle, pyramid, star, snowflake
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/76—Architectures of general purpose stored programme computers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/30—Creation or generation of source code
- G06F8/31—Programming languages or programming paradigms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/25—Using a specific main memory architecture
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lee et al. | Early evaluation of directive-based GPU programming models for productive exascale computing | |
Callahan et al. | The cascade high productivity language | |
US8296743B2 (en) | Compiler and runtime for heterogeneous multiprocessor systems | |
Bueno et al. | Implementing OmpSs support for regions of data in architectures with multiple address spaces | |
Igual et al. | The FLAME approach: From dense linear algebra algorithms to high-performance multi-accelerator implementations | |
JP2669603B2 (en) | Code generation method in compiler and compiler | |
Xu et al. | Nas parallel benchmarks for gpgpus using a directive-based programming model | |
Chapman et al. | Experiences developing the openuh compiler and runtime infrastructure | |
JP2019049843A (en) | Execution node selection program and execution node selection method and information processor | |
Lee et al. | OpenMPC: extended OpenMP for efficient programming and tuning on GPUs | |
Cramer et al. | OpenMP target device offloading for the SX-Aurora TSUBASA vector engine | |
Strzodka | Data layout optimization for multi-valued containers in OpenCL | |
Hormati et al. | Macross: Macro-simdization of streaming applications | |
Sakaguchi et al. | Programmability and Performance of New Global-View Programming API for Multi-Node and Multi-Core Processing | |
Khaldi et al. | Extending llvm ir for dpc++ matrix support: A case study with intel® advanced matrix extensions (intel® amx) | |
US20030126589A1 (en) | Providing parallel computing reduction operations | |
Nakao et al. | Implementation and evaluation of the HPC challenge benchmark in the XcalableMP PGAS language | |
Ernstsson et al. | Assessing Application Efficiency and Performance Portability in Single-Source Programming for Heterogeneous Parallel Systems | |
Yang et al. | The implementation of a high performance GPGPU compiler | |
Yan et al. | Homp: Automated distribution of parallel loops and data in highly parallel accelerator-based systems | |
Hanxleden et al. | Value-based distributions in fortran d| a preliminary report | |
Bylina et al. | Explicit Fourth-Order Runge–Kutta Method on Intel Xeon Phi Coprocessor | |
Bova et al. | Combining message-passing and directives in parallel applications | |
Malyshkin et al. | Control flow usage to improve performance of fragmented programs execution | |
Nölp et al. | Simplifying non-contiguous data transfer with MPI for Python |