Tietze et al., 2017 - Google Patents
Synthesis of indolizinoquinolinones through three-and four-component domino Knoevenagel/hetero-Diels–Alder reactions: novel access to (+)-camptothecinTietze et al., 2017
- Document ID
- 5130845369493632537
- Author
- Tietze L
- Bischoff M
- Khan T
- Liu D
- Publication year
- Publication venue
- Chemistry of Heterocyclic Compounds
External Links
Snippet
The fused heterocyclic indolizinoquinolinone system is a key structural feature of several highly bioactive alkaloids, including camptothecin. Camptothecin has been efficiently obtained by a three-or four-component domino Knoevenagel/hetero-Diels–Alder reaction of …
- VSJKWCGYPAHWDS-FQEVSTJZSA-N Camptothecin   C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 0 title abstract description 33
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/12—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
- C07D471/14—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/12—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
- C07D471/18—Bridged systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D215/00—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
- C07D215/02—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
- C07D215/16—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/06—Peri-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by C07D451/00 - C07D477/00
- C07D487/12—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
- C07D487/14—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/12—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
- C07D491/14—Ortho-condensed systems
- C07D491/147—Ortho-condensed systems the condensed system containing one ring with oxygen as ring hetero atom and two rings with nitrogen as ring hetero atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D498/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D498/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D498/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/22—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains four or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/02—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D498/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D498/22—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D221/00—Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
- C07D221/02—Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
- C07D221/04—Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems ortho- or peri-condensed ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D513/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
- C07D513/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
- C07D513/06—Peri-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D519/00—Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zubkov et al. | A new approach to construction of isoindolo [1, 2-a] isoquinoline alkaloids Nuevamine, Jamtine, and Hirsutine via IMDAF reaction | |
Iaroshenko et al. | 4-Chloro-3-(trifluoroacetyl)-and 4-chloro-3-(methoxalyl) coumarins as novel and efficient building blocks for the regioselective synthesis of 3, 4-fused coumarins | |
Joussot et al. | Synthesis of 3-substituted chromones and quinolones from enaminones | |
Pin et al. | Intramolecular N-aza-amidoalkylation in association with Witkop–Winterfeldt oxidation as the key step to synthesize Luotonin-A analogues | |
CN107108591B (en) | Resorcinol derivatives as HSP90 inhibitors | |
Tietze et al. | Synthesis of indolizinoquinolinones through three-and four-component domino Knoevenagel/hetero-Diels–Alder reactions: novel access to (+)-camptothecin | |
Shestakov et al. | Cycloisomerization–a straightforward way to benzo [h] quinolines and benzo [c] acridines | |
Olyaei et al. | Green synthetic approach toward new chromeno [4, 3-b] quinoline and chromeno [4, 3-b] pyridine derivatives | |
Shaik et al. | Regioselective oxidative cross-coupling of benzo [d] imidazo [2, 1-b] thiazoles with styrenes: A novel route to C3-dicarbonylation | |
Elinson et al. | Fast Efficient and General PASE Approach to Medicinally Relevant 4H, 5H‐Pyrano‐[4, 3‐b] pyran‐5‐one and 4, 6‐Dihydro‐5H‐pyrano‐[3, 2‐c] pyridine‐5‐one Scaffolds | |
Thomae et al. | Synthesis of selenophene analogues of the tacrine series: comparison of classical route and microwave irradiation | |
CN115703775A (en) | KRAS mutant G12C inhibitor and preparation method and application thereof | |
Stepanova et al. | Diversity-oriented Synthesis via Catalyst-free Addition of Ketones to [e]-Fused 1H-Pyrrole-2, 3-diones | |
Victor et al. | An Expeditious and Metal‐Free Synthetic Route towards Quinolones, Naphthyridones and Benzonaphthyridones | |
Jebali et al. | A Short and Efficient Approach to Pyrrolo [2, 1-a] isoquinoline and Pyrrolo [2, 1-a] benzazepine Derivatives | |
Vazquez et al. | Synthesis of novel 2, 3-dihydro-1, 4-dioxino [2, 3-g] quinoline derivatives as potential antitumor agents | |
Medvedeva et al. | New Heterocyclic Systems Based on Substituted 3, 4-Dihydro-1 H-Spiro [Quinoline-2, 1'-Cycloalkanes] | |
Tang et al. | Synthesis of 8-Bromo-7-chloro [1, 2, 4] triazolo [4, 3-c] pyrimidines, Their Ring Rearrangement to [1, 5-c] Analogues, and Further Diversification | |
US10336704B2 (en) | Method for preparing indenoisoquinoline derivatives | |
JP2007514714A (en) | Tricyclic imidazopyridines for use as gastric acid secretion inhibitors | |
Taheri et al. | A straightforward approach for the synthesis of novel fused thiopyrano [2, 3-b] indole derivatives from the Intramolecular Friedel-Crafts acylation | |
Orlov et al. | Carbo [3+ 3] cyclocondensation reactions. A new method for the synthesis of tetrahydropyrazolo [1, 5-b] quinazolines and tetrahydropyrazolo [4, 5-b] quinolines | |
Letessier et al. | Microwave-Assisted Synthesis of 1, 3-Disubstituted β-Carbolines from α-(Alkylideneamino) Nitriles and Gramine | |
Bahajaj et al. | Stereoselectivity of cyclisations via N-acyliminium ions to form pyrido [2′, 3′: 3, 4] pyrrolo [2, 1-a] isoindole,-isoquinoline and-benz [c] azepine ring systems | |
Filimonov et al. | Tandem Knoevenagel condensation and intramolecular cycloaddition reactions of 2-azidobenzaldehydes with 2-cyanoacetamides in the synthesis of 4-thiocarbamoyltetrazolo-[1, 5-a] quinolines |