Almoro et al., 2009 - Google Patents
Object wave reconstruction by speckle illumination and phase retrievalAlmoro et al., 2009
View PDF- Document ID
- 5086448373528276782
- Author
- Almoro P
- Hanson S
- Publication year
- Publication venue
- Journal of the European Optical Society-Rapid Publications
External Links
Snippet
An innovative setup for the speckle-based phase retrieval method is proposed. In the conventional setup, a plane wave illuminates the test object and the transmitted wavefront is incident on a diffuser aperture generating a speckle field. The sampled speckle intensities at …
- 238000005286 illumination 0 title description 11
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/4795—Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Instruments as specified in the subgroups and characterised by the use of optical measuring means
- G01B9/02—Interferometers for determining dimensional properties of, or relations between, measurement objects
- G01B9/02001—Interferometers for determining dimensional properties of, or relations between, measurement objects characterised by manipulating or generating specific radiation properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/41—Refractivity; Phase-affecting properties, e.g. optical path length
- G01N21/45—Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical means
- G01B11/24—Measuring arrangements characterised by the use of optical means for measuring contours or curvatures
- G01B11/2441—Measuring arrangements characterised by the use of optical means for measuring contours or curvatures using interferometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Instruments as specified in the subgroups and characterised by the use of optical measuring means
- G01B9/02—Interferometers for determining dimensional properties of, or relations between, measurement objects
- G01B9/02015—Interferometers for determining dimensional properties of, or relations between, measurement objects characterised by a particular beam path configuration
- G01B9/02022—Interferometers for determining dimensional properties of, or relations between, measurement objects characterised by a particular beam path configuration contacting one object by grazing incidence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Instruments as specified in the subgroups and characterised by the use of optical measuring means
- G01B9/02—Interferometers for determining dimensional properties of, or relations between, measurement objects
- G01B9/02055—Interferometers for determining dimensional properties of, or relations between, measurement objects characterised by error reduction techniques
- G01B9/02056—Passive error reduction, i.e. not varying during measurement, e.g. by constructional details of optics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/02—Testing of optical properties of lenses
- G01M11/0242—Testing of optical properties of lenses by measuring geometrical properties or aberrations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N2021/653—Coherent methods [CARS]
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infra-red or ultra-violet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infra-red or ultra-violet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/0005—Adaptation of holography to specific applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2290/00—Aspects of interferometers not specifically covered by any group under G01B9/02
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Picart | New techniques in digital holography | |
US7839551B2 (en) | Holographic microscopy of holographically trapped three-dimensional structures | |
JP4772961B2 (en) | Method for simultaneously forming an amplitude contrast image and a quantitative phase contrast image by numerically reconstructing a digital hologram | |
TWI655522B (en) | Method and device for illuminating digital full image by structured light | |
US9164479B2 (en) | Systems and methods of dual-plane digital holographic microscopy | |
Palacios et al. | 3D image reconstruction of transparent microscopic objects using digital holography | |
Zhou et al. | A review of the dual-wavelength technique for phase imaging and 3D topography | |
de Groot et al. | Contributions of holography to the advancement of interferometric measurements of surface topography | |
TWI797377B (en) | Surface shape measuring device and surface shape measuring method | |
Guo et al. | LED-based digital holographic microscopy with slightly off-axis interferometry | |
Tiziani et al. | From speckle pattern photography to digital holographic interferometry | |
Almoro et al. | Object wave reconstruction by speckle illumination and phase retrieval | |
CN114324245B (en) | Quantitative phase microscopic device and method based on partially coherent structured light illumination | |
Liu et al. | Computational optical phase imaging | |
Picart et al. | Basic fundamentals of digital holography | |
Almoro et al. | THE EUROPEAN OPTI CAL SOCI ETY | |
JP7432227B2 (en) | Phase imaging device, phase imaging method | |
US20120274945A1 (en) | Method and system for structural analysis of an object by measuring the wave front thereof | |
Burch | Laser speckle metrology | |
AU2020103536A4 (en) | A new phase-shifting phase micro imaging method based on an F-P cavity | |
Friedman et al. | Hybrid reflective interferometric system combining wide-field and single-point phase measurements | |
AU2020103537A4 (en) | A new multiwavelength phase micro imaging method based on an F-P cavity | |
Yan et al. | Comparison of digital holographic microscope and confocal microscope methods for characterization of micro-optical diffractive components | |
CN115711866A (en) | Quantitative phase contrast tomography microscopic device and method based on annular scanning illumination | |
Joseph et al. | A heterodyne mach-zehnder interferometer employing static and dynamic phase demodulation techniques for live-cell imaging |