Baccigalupi et al., 2011 - Google Patents
Testing high resolution DACs: a contribution to draft standard IEEE P1658Baccigalupi et al., 2011
View PDF- Document ID
- 5076274790006959815
- Author
- Baccigalupi A
- D’Arco M
- Liccardo A
- Vadursi M
- Publication year
- Publication venue
- Measurement
External Links
Snippet
The dynamic characterization of digital to analog converters (DACs) is still an open issue, on whose criticality both the scientific and industrial community agree. At present, only a draft standard (IEEE P1658) has been proposed, which is currently being discussed. In the last …
- 229920005994 diacetyl cellulose 0 title abstract description 139
Classifications
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0626—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by filtering
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/124—Sampling or signal conditioning arrangements specially adapted for A/D converters
- H03M1/1245—Details of sampling arrangements or methods
- H03M1/1265—Non-uniform sampling
- H03M1/128—Non-uniform sampling at random intervals, e.g. digital alias free signal processing [DASP]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R13/00—Arrangements for displaying electric variables or waveforms
- G01R13/02—Arrangements for displaying electric variables or waveforms for displaying measured electric variables in digital form
- G01R13/0218—Circuits therefor
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/1205—Multiplexed conversion systems
- H03M1/121—Interleaved, i.e. using multiple converters or converter parts for one channel
- H03M1/1215—Interleaved, i.e. using multiple converters or converter parts for one channel using time-division multiplexing
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0634—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale
- H03M1/0636—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the amplitude domain
- H03M1/0639—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the amplitude domain using dither
- H03M1/0641—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the amplitude domain using dither the dither being a random signal
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/08—Continuously compensating for, or preventing, undesired influence of physical parameters of noise
- H03M1/0836—Continuously compensating for, or preventing, undesired influence of physical parameters of noise of phase error, e.g. jitter
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0614—Continuously compensating for, or preventing, undesired influence of physical parameters of harmonic distortion
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R23/00—Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
- G01R23/16—Spectrum analysis; Fourier analysis
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
- H03M1/1071—Measuring or testing
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
- H03M1/1009—Calibration
- H03M1/1033—Calibration over the full range of the converter, e.g. for correcting differential non-linearity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R23/00—Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
- G01R23/02—Arrangements for measuring frequency, e.g. pulse repetition rate Arrangements for measuring period of current or voltage
- G01R23/14—Arrangements for measuring frequency, e.g. pulse repetition rate Arrangements for measuring period of current or voltage by heterodyning; by beat-frequency comparison
- G01R23/145—Arrangements for measuring frequency, e.g. pulse repetition rate Arrangements for measuring period of current or voltage by heterodyning; by beat-frequency comparison by heterodyning or by beat-frequency comparison with the harmonic of an oscillator
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R13/00—Arrangements for displaying electric variables or waveforms
- G01R13/20—Cathode-ray oscilloscopes; Oscilloscopes using other screens than CRT's, e.g. LCD's
- G01R13/22—Circuits therefor
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/25—Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
- G01R19/2506—Arrangements for conditioning or analysing measured signals, e.g. for indicating peak values ; Details concerning sampling, digitizing or waveform capturing
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/39—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6405147B1 (en) | Signal transfer device measurement system and method | |
Vogel | The impact of combined channel mismatch effects in time-interleaved ADCs | |
US8290032B2 (en) | Distortion identification apparatus, test system, recording medium and distortion identification method | |
EP1720259A1 (en) | Calibration of timing | |
US8358682B2 (en) | Signal processing apparatus, test system, distortion detecting apparatus, signal compensation apparatus, analytic signal generating apparatus, recording medium and analytic signal generating method | |
Baccigalupi et al. | Testing high resolution DACs: a contribution to draft standard IEEE P1658 | |
Linnenbrink et al. | ADC testing | |
D'Apuzzo et al. | Modeling DAC output waveforms | |
Michaeli et al. | Error models of the analog to digital converters | |
Cruz et al. | Mixed analog-digital instrumentation for software-defined-radio characterization | |
Balestrieri et al. | Research trends and challenges on DAC testing | |
US7272521B1 (en) | Measurement of phase nonlinearity of non-linear devices | |
US6281819B1 (en) | Device for ENOB estimation for ADC's based on dynamic deviation and method therefor | |
Parkey et al. | Modeling of jitter and its effects on time interleaved ADC conversion | |
De Vito et al. | A novel measurement method for DAC frequency response characterization | |
Adamo et al. | Measuring the static characteristic of dithered A/D converters | |
Chiorboli | Sub-picosecond aperture-uncertainty measurements [ADCs] | |
Moschitta et al. | Measurements of transient phenomena with digital oscilloscopes | |
Hofner | Defining and testing dynamic ADC parameters | |
Mansour et al. | Design and implementation of a platform for experimental testing and validation of analog-to-digital converters: static and dynamic parameters | |
Carnì et al. | Static and dynamic test of high resolution DAC based on over sampling and low resolution ADC | |
Balestrieri et al. | DAC testing: recent research directions | |
Kvedaras et al. | Settling time testing of fast DACs | |
Betts | Vector and harmonic amplitude/phase corrected multi-envelope stimulus response measurements of nonlinear devices | |
Slepička | The estimation of test signal quality by means of two simple filters in ADC testing |