[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Jollivet et al., 2014 - Google Patents

Mode-resolved gain analysis and lasing in multi-supermode multi-core fiber laser

Jollivet et al., 2014

View HTML @Full View
Document ID
4942467902948893222
Author
Jollivet C
Mafi A
Flamm D
Duparré M
Schuster K
Grimm S
Schülzgen A
Publication year
Publication venue
Optics express

External Links

Snippet

Multi-core fibers (MCFs) with coupled-cores are attractive large-mode area (LMA) specialty fiber designs that support the propagation of a few transverse modes often called supermodes (SMs). Compared to other LMA fibers, the uniqueness of MCF arises from the …
Continue reading at opg.optica.org (HTML) (other versions)

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02361Longitudinal structures forming multiple layers around the core, e.g. arranged in multiple rings with each ring having longitudinal elements at substantially the same radial distance from the core, having rotational symmetry about the fibre axis
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02376Longitudinal variation along fibre axis direction, e.g. tapered holes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02338Structured core, e.g. core contains more than one material, non-constant refractive index distribution in core, asymmetric or non-circular elements in core unit, multiple cores, insertions between core and clad
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/2935Mach-Zehnder configuration, i.e. comprising separate splitting and combining means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/02057Optical fibre with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/036Optical fibre with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/10Light guides of the optical waveguide type
    • G02B6/105Light guides of the optical waveguide type having optical polarisation effects
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/05Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/05Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/05Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers

Similar Documents

Publication Publication Date Title
Jollivet et al. Mode-resolved gain analysis and lasing in multi-supermode multi-core fiber laser
Sun et al. Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating
Cárdenas-Sevilla et al. Photonic crystal fiber sensor array based on modes overlapping
Dianov et al. High-power cw bismuth-fiber lasers
Wang et al. High-order mode direct oscillation of few-mode fiber laser for high-quality cylindrical vector beams
Sugavanam et al. Multiwavelength generation in a random distributed feedback fiber laser using an all fiber Lyot filter
Castillo-Guzman et al. Widely tunable erbium-doped fiber laser based on multimode interference effect
Zhang et al. 21 spatial mode erbium-doped fiber amplifier for mode division multiplexing transmission
Zhu et al. Detailed investigation of self-imaging in largecore multimode optical fibers for application in fiber lasers and amplifiers
Moon et al. Multi-wavelength lasing oscillations in an erbium-doped fiber laser using few-mode fiber Bragg grating
Williams et al. Optimizing the net reflectivity of point-by-point fiber Bragg gratings: the role of scattering loss
Wang et al. C-and L-band tunable fiber ring laser using a two-taper Mach–Zehnder interferometer filter
Fan et al. High power Yb-doped photonic bandgap fiber oscillator at 1178 nm
Folkenberg et al. Experimental investigation of cutoff phenomena in nonlinear photonic crystal fibers
Walbaum et al. Multimode interference filter for tuning of a mode-locked all-fiber erbium laser
Moon et al. Polarization controlled multi-wavelength Er-doped fiber laser using fiber Bragg grating written in few-mode side-hole fiber with an elliptical core
Yin et al. Effect of beam waists on performance of the tunable fiber laser based on in-line two-taper Mach–Zehnder interferometer filter
Chang et al. Array size scalability of passively coherently phased fiber laser arrays
Saitoh et al. Design of narrow band-pass filters based on the resonant-tunneling phenomenon in multi-core photonic crystal fibers
Wikszak et al. Linearly polarized ytterbium fiber laser based on intracore femtosecond-written fiber Bragg gratings
Wu et al. High-stability erbium-doped photonic crystal fiber source
Wang et al. Study of asymmetric biconical fiber tapers for in-fiber Mach-Zehnder interferometers and applications in single-frequency fiber lasers
Peterka et al. Experimental demonstration of novel end-pumping method for double-clad fiber devices
Goto et al. Linearly polarized fiber laser using a point-by-point Bragg grating in a single-polarization photonic bandgap fiber
Palma-Vega et al. TMI and polarization static energy transfer in Yb-doped low-NA PM fibers