Yan et al., 2017 - Google Patents
Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samplesYan et al., 2017
View HTML- Document ID
- 4870342184853613181
- Author
- Yan W
- Yang Y
- Tan Y
- Chen X
- Li Y
- Qu J
- Ye T
- Publication year
- Publication venue
- Photonics research
External Links
Snippet
Stimulated emission depletion (STED) microscopy is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the specially engineered beam profile of the depletion …
- 230000003287 optical 0 title abstract description 17
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/6456—Spatial resolved fluorescence measurements; Imaging
- G01N21/6458—Fluorescence microscopy
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0052—Optical details of the image generation
- G02B21/0076—Optical details of the image generation arrangements using fluorescence or luminescence
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B21/00—Microscopes
- G02B21/16—Microscopes adapted for ultra-violet illumination; Fluorescence microscopes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N2021/653—Coherent methods [CARS]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/636—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited using an arrangement of pump beam and probe beam; using the measurement of optical non-linear properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B21/00—Microscopes
- G02B21/36—Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B27/00—Other optical systems; Other optical apparatus
- G02B27/58—Optics for apodization or superresolution; Optical synthetic aperture systems
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/35—Non-linear optics
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B3/00—Simple or compound lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B5/00—Optical elements other than lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/02—Optical fibre with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yan et al. | Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples | |
Engelbrecht et al. | Resolution enhancement in a light-sheet-based microscope (SPIM) | |
Tao et al. | Adaptive optical two-photon microscopy using autofluorescent guide stars | |
Auksorius et al. | Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging | |
Patton et al. | Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics | |
Gould et al. | Adaptive optics enables 3D STED microscopy in aberrating specimens | |
Azucena et al. | Adaptive optics wide-field microscopy using direct wavefront sensing | |
Sinefeld et al. | Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence | |
Vellekoop et al. | Scattered light fluorescence microscopy: imaging through turbid layers | |
Tao et al. | Adaptive optics microscopy with direct wavefront sensing using fluorescent protein guide stars | |
Milkie et al. | Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination | |
Tao et al. | Live imaging using adaptive optics with fluorescent protein guide-stars | |
McGorty et al. | Correction of depth-dependent aberrations in 3D single-molecule localization and super-resolution microscopy | |
Grover et al. | Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging | |
Chowdhury et al. | Structured illumination quantitative phase microscopy for enhanced resolution amplitude and phase imaging | |
Jesacher et al. | Adaptive harmonic generation microscopy of mammalian embryos | |
Gasecka et al. | Resolution and contrast enhancement in coherent anti-Stokes Raman-scattering microscopy | |
Wang et al. | Pupil-segmentation-based adaptive optical correction of a high-numerical-aperture gradient refractive index lens for two-photon fluorescence endoscopy | |
Olivier et al. | Dynamic aberration correction for multiharmonic microscopy | |
Doi et al. | High-resolution imaging in two-photon excitation microscopy using in situ estimations of the point spread function | |
Paudel et al. | Axial range of conjugate adaptive optics in two-photon microscopy | |
Otomo et al. | Two-photon excitation STED microscopy by utilizing transmissive liquid crystal devices | |
Hernandez et al. | Zero-order suppression for two-photon holographic excitation | |
Miyazaki et al. | Resolution improvement in laser diode-based pump–probe microscopy with an annular pupil filter | |
Fu et al. | Light field microscopy based on structured light illumination |