Yang et al., 2018 - Google Patents
Segmentation in weakly labeled videos via a semantic ranking and optical warping networkYang et al., 2018
- Document ID
- 4842133416018725699
- Author
- Yang L
- Han J
- Zhang D
- Liu N
- Zhang D
- Publication year
- Publication venue
- IEEE Transactions on Image Processing
External Links
Snippet
Weakly supervised video object segmentation (WSVOS) focuses on generating pixel-level object masks for videos only tagged with class labels, which is an essential yet challenging task. For WSVOS, the algorithm is just aware of rough category information rather than the …
- 230000011218 segmentation 0 title abstract description 168
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
- G06K9/4671—Extracting features based on salient regional features, e.g. Scale Invariant Feature Transform [SIFT] keypoints
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/68—Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6201—Matching; Proximity measures
- G06K9/6202—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30781—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F17/30784—Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre
- G06F17/30799—Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre using low-level visual features of the video content
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30244—Information retrieval; Database structures therefor; File system structures therefor in image databases
- G06F17/30247—Information retrieval; Database structures therefor; File system structures therefor in image databases based on features automatically derived from the image data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00624—Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
- G06K9/00711—Recognising video content, e.g. extracting audiovisual features from movies, extracting representative key-frames, discriminating news vs. sport content
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20112—Image segmentation details
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K2209/00—Indexing scheme relating to methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Video salient object detection via fully convolutional networks | |
Mou et al. | Vehicle instance segmentation from aerial image and video using a multitask learning residual fully convolutional network | |
Li et al. | A benchmark dataset and saliency-guided stacked autoencoders for video-based salient object detection | |
Fan et al. | Salient objects in clutter | |
Xiao et al. | Deep salient object detection with dense connections and distraction diagnosis | |
Li et al. | Human attribute recognition by deep hierarchical contexts | |
Liu et al. | Weakly-supervised salient object detection with saliency bounding boxes | |
Zhang et al. | Curriculum-style local-to-global adaptation for cross-domain remote sensing image segmentation | |
Yang et al. | Segmentation in weakly labeled videos via a semantic ranking and optical warping network | |
Wang et al. | Deep sub-region network for salient object detection | |
Chen et al. | Learning recurrent 3D attention for video-based person re-identification | |
Zhang et al. | Attention and boundary guided salient object detection | |
Huang et al. | Joint cross-modal and unimodal features for RGB-D salient object detection | |
Xiong et al. | Pixel objectness: learning to segment generic objects automatically in images and videos | |
Fan et al. | Seeing through darkness: Visual localization at night via weakly supervised learning of domain invariant features | |
Gao et al. | Co-saliency detection with co-attention fully convolutional network | |
Li et al. | Primary video object segmentation via complementary CNNs and neighborhood reversible flow | |
Liu et al. | Learning part segmentation through unsupervised domain adaptation from synthetic vehicles | |
Gunawardena et al. | Real-time automated video highlight generation with dual-stream hierarchical growing self-organizing maps | |
Zhang et al. | Deep salient object detection by integrating multi-level cues | |
Xia et al. | Pedestrian detection algorithm based on multi-scale feature extraction and attention feature fusion | |
Zhou et al. | Se2net: Siamese edge-enhancement network for salient object detection | |
Deng et al. | MINet: Meta-learning instance identifiers for video object detection | |
Yang et al. | Bottom-up foreground-aware feature fusion for practical person search | |
Nemade et al. | Image segmentation using convolutional neural network for image annotation |