Mallick et al., 2020 - Google Patents
Video retrieval using salient foreground region of motion vector based extracted keyframes and spatial pyramid matchingMallick et al., 2020
View PDF- Document ID
- 4770394125591955071
- Author
- Mallick A
- Mukhopadhyay S
- Publication year
- Publication venue
- Multimedia Tools and Applications
External Links
Snippet
Despite enormous research efforts devoted by the research community to effectively and precisely perform video matching and retrieval among heterogeneous videos from large- scale video repositories still remains a complex and most challenging task. In order to …
- 238000000605 extraction 0 abstract description 48
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30244—Information retrieval; Database structures therefor; File system structures therefor in image databases
- G06F17/30247—Information retrieval; Database structures therefor; File system structures therefor in image databases based on features automatically derived from the image data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30781—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F17/30784—Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre
- G06F17/30799—Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre using low-level visual features of the video content
- G06F17/30811—Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre using low-level visual features of the video content using motion, e.g. object motion, camera motion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
- G06K9/4671—Extracting features based on salient regional features, e.g. Scale Invariant Feature Transform [SIFT] keypoints
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00624—Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
- G06K9/00711—Recognising video content, e.g. extracting audiovisual features from movies, extracting representative key-frames, discriminating news vs. sport content
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6279—Classification techniques relating to the number of classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6201—Matching; Proximity measures
- G06K9/6202—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/68—Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30017—Multimedia data retrieval; Retrieval of more than one type of audiovisual media
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30861—Retrieval from the Internet, e.g. browsers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Feng et al. | Learning deep event models for crowd anomaly detection | |
Mehrjardi et al. | A survey on deep learning-based image forgery detection | |
Faraki et al. | Log‐Euclidean bag of words for human action recognition | |
CN103988232A (en) | IMAGE MATCHING by USING MOTION MANIFOLDS | |
Mironică et al. | A modified vector of locally aggregated descriptors approach for fast video classification | |
Javed et al. | Replay and key-events detection for sports video summarization using confined elliptical local ternary patterns and extreme learning machine | |
Xie et al. | Context-aware pedestrian detection especially for small-sized instances with Deconvolution Integrated Faster RCNN (DIF R-CNN) | |
dos Santos Belo et al. | Summarizing video sequence using a graph-based hierarchical approach | |
Wu et al. | Vehicle re-identification in still images: Application of semi-supervised learning and re-ranking | |
Zheng et al. | Multi-scale attention vehicle re-identification | |
Li et al. | Videography-based unconstrained video analysis | |
Wang et al. | S 3 D: Scalable pedestrian detection via score scale surface discrimination | |
Mahmoodi et al. | Violence detection in videos using interest frame extraction and 3D convolutional neural network | |
Gao et al. | Key-frame selection for automatic summarization of surveillance videos: a method of multiple change-point detection | |
Mahum et al. | A robust framework to generate surveillance video summaries using combination of zernike moments and r-transform and deep neural network | |
Tseng et al. | Person retrieval in video surveillance using deep learning–based instance segmentation | |
Huang et al. | Pedestrian detection using RetinaNet with multi-branch structure and double pooling attention mechanism | |
Gayathri et al. | Improved fuzzy-based SVM classification system using feature extraction for video indexing and retrieval | |
Mallick et al. | Video retrieval using salient foreground region of motion vector based extracted keyframes and spatial pyramid matching | |
Sowmyayani et al. | Content based video retrieval system using two stream convolutional neural network | |
Tian et al. | Imitating targets from all sides: An unsupervised transfer learning method for person re-identification | |
Wu et al. | Overview of deep learning based pedestrian attribute recognition and re-identification | |
Cao et al. | Mining spatiotemporal video patterns towards robust action retrieval | |
Khurana et al. | Two stream multi-layer convolutional network for keyframe-based video summarization | |
Ke et al. | Multi-object tracking by joint detection and identification learning |