Omkari et al., 2022 - Google Patents
Cardiovascular Disease Prediction Using Machine Learning Techniques with HyperOptOmkari et al., 2022
- Document ID
- 4721025053308536626
- Author
- Omkari D
- Shinde S
- Publication year
- Publication venue
- International Conference on Communication and Intelligent Systems
External Links
Snippet
In recent years, heart disease has adversely affected people's quality of life. Since the mortality rate from heart disease is still relatively high, there is a need to increase efforts in prevention to improve the prediction model for heart disease. Machine learning (ML) has …
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/34—Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
- G06F19/345—Medical expert systems, neural networks or other automated diagnosis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/32—Medical data management, e.g. systems or protocols for archival or communication of medical images, computerised patient records or computerised general medical references
- G06F19/322—Management of patient personal data, e.g. patient records, conversion of records or privacy aspects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/34—Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
- G06F19/3437—Medical simulation or modelling, e.g. simulating the evolution of medical disorders
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/34—Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
- G06F19/3431—Calculating a health index for the patient, e.g. for risk assessment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/34—Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
- G06F19/3487—Medical report generation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/32—Medical data management, e.g. systems or protocols for archival or communication of medical images, computerised patient records or computerised general medical references
- G06F19/324—Management of patient independent data, e.g. medical references in digital format
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Systems or methods specially adapted for a specific business sector, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/22—Health care, e.g. hospitals; Social work
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/24—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for machine learning, data mining or biostatistics, e.g. pattern finding, knowledge discovery, rule extraction, correlation, clustering or classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/04—Inference methods or devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/18—Digital computers in general; Data processing equipment in general in which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Akella et al. | Machine learning algorithms for predicting coronary artery disease: efforts toward an open source solution | |
Ambekar et al. | Disease risk prediction by using convolutional neural network | |
Senan et al. | Score and Correlation Coefficient‐Based Feature Selection for Predicting Heart Failure Diagnosis by Using Machine Learning Algorithms | |
Doppala et al. | A hybrid machine learning approach to identify coronary diseases using feature selection mechanism on heart disease dataset | |
Khan et al. | Machine learning techniques for heart disease datasets: A survey | |
Kishor et al. | Diagnosis of heart disease using internet of things and machine learning algorithms | |
Mohapatra et al. | Detection of diabetes using multilayer perceptron | |
Mall et al. | Implementation of machine learning techniques for disease diagnosis | |
Almazroi et al. | A clinical decision support system for heart disease prediction using deep learning | |
Patel et al. | Heart disease prediction using machine learning | |
Pujianto et al. | Comparison of Naïve Bayes Algorithm and Decision Tree C4. 5 for Hospital Readmission Diabetes Patients using HbA1c Measurement. | |
Makram et al. | Machine learning approach for diagnosis of heart diseases | |
Rahman et al. | Machine learning models for chronic kidney disease diagnosis and prediction | |
Nandakumar et al. | Cardiac disease detection using cuckoo search enabled deep belief network | |
Saif et al. | Deep-kidney: an effective deep learning framework for chronic kidney disease prediction | |
Dhanka et al. | HyOPTXGBoost and HyOPTRF: Hybridized Intelligent Systems using Optuna Optimization Framework for Heart Disease Prediction with Clinical Interpretations | |
Oliveira et al. | CML-Cardio: a cascade machine learning model to predict cardiovascular disease risk as a primary prevention strategy | |
Gupta et al. | An overview of clinical decision support system (cdss) as a computational tool and its applications in public health | |
Rahul et al. | Cardiovascular Disease Classification Using Different Algorithms | |
Omkari et al. | Cardiovascular Disease Prediction Using Machine Learning Techniques with HyperOpt | |
Prasanna et al. | Deep Bi-LSTM with Binary Harris Hawkes Algorithm-Based Heart Risk Level Prediction | |
Deepa et al. | Action fuzzy rule based classifier for analysis of dermatology databases | |
Rana | Comparison of coronary heart disease prediction models using various machine learning algorithms | |
El-Rahman et al. | Chronic diseases monitoring and diagnosis system based on features selection and machine learning predictive models | |
Mehrankia et al. | Prediction of heart attacks using biological signals based on recurrent GMDH neural network |