Huang et al., 2019 - Google Patents
Multi-parameter dynamical measuring system using fibre Bragg grating sensors for industrial hydraulic pipingHuang et al., 2019
View PDF- Document ID
- 4725701442723826024
- Author
- Huang J
- Pham D
- Ji C
- Wang Z
- Zhou Z
- Publication year
- Publication venue
- Measurement
External Links
Snippet
Due to the risk of failure induced by vibration fatigue, performance testing and condition monitoring are important to hydraulic piping systems in some critical industries such as nuclear power, oil and gas, and aerospace. A multi-parameter dynamical measuring system …
- 239000000835 fiber 0 title abstract description 31
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress in general
- G01L1/24—Measuring force or stress in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infra-red, visible light, ultra-violet
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
- G01M5/00—Investigating the elasticity of structures, e.g. deflection of bridges, air-craft wings
- G01M5/0041—Investigating the elasticity of structures, e.g. deflection of bridges, air-craft wings by determining deflection or stress
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L11/00—Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, e.g. due to impact, work, mechanical power, or torque, adapted for special purposes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/08—Testing of mechanical properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L3/00—Measuring torque, work, mechanical power, or mechanical efficiency in general
- G01L3/02—Rotary-transmission dynamometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical means
- G01B11/16—Measuring arrangements characterised by the use of optical means for measuring the deformation in a solid, e.g. optical strain gauge
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Huang et al. | Multi-parameter dynamical measuring system using fibre Bragg grating sensors for industrial hydraulic piping | |
Li et al. | Investigation of sensitivity enhancing and temperature compensation for fiber Bragg grating (FBG)-based strain sensor | |
Liang et al. | A fiber Bragg grating pressure sensor with temperature compensation based on diaphragm-cantilever structure | |
Bhaskar et al. | Recent advancements in fiber Bragg gratings based temperature and strain measurement | |
CN105115438B (en) | A kind of optical fiber sensing system temperature compensation | |
Liu et al. | Multiparameter measuring system using fiber optic sensors for hydraulic temperature, pressure and flow monitoring | |
Hegde et al. | Temperature compensated diaphragm based Fiber Bragg Grating (FBG) sensor for high pressure measurement for space applications | |
Loupos et al. | Structural health monitoring fiber optic sensors | |
Ghayesh et al. | Thermo-mechanical phase-shift determination in Coriolis mass-flowmeters with added masses | |
Nawrot et al. | Development of a mechanical strain amplifying transducer with Bragg grating sensor for low-amplitude strain sensing | |
Ren et al. | Application of fiber Bragg grating based strain sensor in pipeline vortex-induced vibration measurement | |
Ong et al. | Acoustic vibration sensor based on macro-bend coated fiber for pipeline leakage detection | |
Ren et al. | The temperature compensation of FBG sensor for monitoring the stress on hole-edge | |
Hong-kun et al. | High sensitivity optical fiber pressure sensor based on thin-walled oval cylinder | |
Liehr et al. | Application of quasi-distributed and dynamic length and power change measurement using optical frequency domain reflectometry | |
Jia et al. | Performance study of FBG hoop strain sensor for pipeline leak detection and localization | |
Yang et al. | Vibration resistance FBG temperature sensor fabrication and its application in the motor for hydraulic pump | |
Li et al. | A diaphragm-type highly sensitive fiber Bragg grating force transducer with temperature compensation | |
EP3311130A1 (en) | Fiber optic pressure apparatus, methods, and applications | |
Jahnert et al. | Optical fiber serpentine arrangements for vibration analysis using distributed acoustic sensing | |
Wang et al. | A fibre Bragg grating accelerometer with temperature insensitivity for cable force monitoring of FAST | |
Shan-chao et al. | Study of Three‐Component FBG Vibration Sensor for Simultaneous Measurement of Vibration, Temperature, and Verticality | |
Wu et al. | An FBG-based high-sensitivity structure and its application in non-intrusive detection of pipeline | |
Wang et al. | A model-driven scheme to compensate the strain-based non-intrusive dynamic pressure measurement for hydraulic pipe | |
EP3724651B1 (en) | Magneto-optical system for guided wave inspection and monitoring |