Ayakawa et al. - Google Patents
DEVELOPMENT OF AN IMPROVED MULTIFUNCTION HIGH SPEED OPERATING CURRENT DIFFERENTIAL RELAY FOR TRANSMISSION LINE PROTECTIONAyakawa et al.
View PDF- Document ID
- 4689069585152416574
- Author
- Ayakawa H
- Okuno P
External Links
Snippet
Toshiba developed and launched the first fully numerical phase-segregated current differential relay as a transmission line unit protection in 1980. High-speed operation was achieved by communicating the instantaneous values of the three-phase currents, sampled …
- 230000004224 protection 0 title abstract description 32
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/26—Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
- H02H7/261—Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection integrated protection
- H02H3/26—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
- H02H3/28—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus
- H02H3/30—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus using pilot wires or other signalling channel
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H1/00—Details of emergency protective circuit arrangements
- H02H1/0007—Details of emergency protective circuit arrangements concerning the detecting means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H1/00—Details of emergency protective circuit arrangements
- H02H1/0061—Details of emergency protective circuit arrangements concerning transmission of signals
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/22—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02B—BOARDS, SUBSTATIONS, OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
- H02B13/00—Arrangements of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
- H02B13/02—Arrangements of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
- H02B13/035—Gas-insulated switchgear
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
- G01R31/081—Locating faults in cables, transmission lines, or networks according to type of conductors
- G01R31/085—Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
- G01R31/081—Locating faults in cables, transmission lines, or networks according to type of conductors
- G01R31/083—Locating faults in cables, transmission lines, or networks according to type of conductors in cables, e.g. underground
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
- G01R31/11—Locating faults in cables, transmission lines, or networks using pulse reflection methods
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
- G01R31/088—Aspects of digital computing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/25—Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
- G01R19/2513—Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/327—Testing of circuit interrupters, switches or circuit-breakers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/02—Testing of electric apparatus, lines or components, for short-circuits, discontinuities, leakage of current, or incorrect line connection
- G01R31/024—Arrangements for indicating continuity or short-circuits in electric apparatus or lines, leakage or ground faults
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Eriksson et al. | An accurate fault locator with compensation for apparent reactance in the fault resistance resulting from remore-end infeed | |
US11056874B2 (en) | Fault detection and protection during steady state using traveling waves | |
US11307264B2 (en) | Phase selection for traveling wave fault detection systems | |
CA1214538A (en) | Protective relay apparatus and method for providing single-pole tripping | |
US10802054B2 (en) | High-fidelity voltage measurement using a capacitance-coupled voltage transformer | |
US10345363B2 (en) | High-fidelity voltage measurement using resistive divider in a capacitance-coupled voltage transformer | |
Ito et al. | Development of an improved multifunction high speed operating current differential relay for transmission line protection | |
Yee et al. | Ultra High Speed Relay for EHV/UHV Transmission Lines--Installation-Staged Fault Tests and Operational Experience | |
US4538195A (en) | Three terminal current differential protective relay | |
Ayakawa et al. | DEVELOPMENT OF AN IMPROVED MULTIFUNCTION HIGH SPEED OPERATING CURRENT DIFFERENTIAL RELAY FOR TRANSMISSION LINE PROTECTION | |
US20100097736A1 (en) | Method and an apparatus for protecting a bus in a three-phase electrical power system | |
US11105832B2 (en) | High-fidelity voltage measurement using a capacitance-coupled voltage transformer | |
Thomas et al. | Validation of a novel unit protection scheme based on superimposed fault currents | |
Okabe et al. | Investigations of multiple reignition phenomena and protection scheme of shunt reactor current interruption in GIS substations | |
Shanyata et al. | Evaluation of Ultra-High-Speed Line Protection, Traveling-Wave Fault Locating, and Circuit Breaker Reignition Detection on a 220 kV Line in the Kalahari Basin, Namibia | |
Redfern et al. | A new approach to digital current differential protection for low and medium voltage feeder circuits using a digital voice-frequency grade communications channel | |
Kobet et al. | Justifying pilot protection on transmission lines | |
Apostolov | Universal transmission line protection intelligent electronic devices | |
Blumschein et al. | Process bus for bus differential-challenges, solutions, and opportunities | |
Kitagawa et al. | Newly Developed FM Current-Differential Carrier Relaying System and its Field Experiences | |
Tunyagul et al. | Design of a protection relay for use with a measuring CT | |
JPH0898350A (en) | Faulty point orientating equipment of gas insulating switchgear | |
Jiménez et al. | Optical Current measurement transmission over long distances and its application for fault discrimination in hybrid (overhead line+ underground cable) transmission links. Javier Martín Herrera1, Eduardo Villarreal1, Javier Figuera1, Joaquín Rodríguez2 | |
JPS6252539B2 (en) | ||
Ransom et al. | Hybrid Digital Substation Design Experience: Comparing Conventional and Non-Conventional Communication-based Measurements Aaron Martin, Joseph Matsuoka, Darin Boyd, Bonneville Power Administration, Galina Antonova, Mike Kockott, Hitachi Energy |