[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Chen et al., 2018 - Google Patents

Imaging method based on the combination of microlens arrays and aperture arrays

Chen et al., 2018

View HTML
Document ID
4671974861655699110
Author
Chen X
Song Y
Zhang W
Sulaman M
Zhao S
Guo B
Hao Q
Li L
Publication year
Publication venue
Applied optics

External Links

Snippet

Conventional imaging methods will cause a serious distortion for large object plane imaging with a limited object-to-sensor distance (OTSD). Here, we propose an imaging method based on the combination of microlens arrays and aperture arrays to realize the low …
Continue reading at opg.optica.org (HTML) (other versions)

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B27/00Other optical systems; Other optical apparatus
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/10Light guides of the optical waveguide type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B27/00Other optical systems; Other optical apparatus
    • G02B27/0025Other optical systems; Other optical apparatus for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical face, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30861Retrieval from the Internet, e.g. browsers

Similar Documents

Publication Publication Date Title
Banerji et al. Ultra-thin near infrared camera enabled by a flat multi-level diffractive lens
Kim et al. Artificial ommatidia by self-aligned microlenses and waveguides
Chen et al. Imaging method based on the combination of microlens arrays and aperture arrays
Barton et al. Diffractive alvarez lens
Huang et al. High fill factor microlens array fabrication using direct laser writing and its application in wavefront detection
Chen et al. Wavefront coding technique for controlling thermal defocus aberration in an infrared imaging system
Lim et al. Achromatic and athermal lens design by redistributing the element powers on an athermal glass map
Sun et al. Design of spherical aberration free liquid-filled cylindrical zoom lenses over a wide focal length range based on ZEMAX
Sweatt Achromatic triplet using holographic optical elements
Kigner et al. Monolithic all-silicon flat lens for broadband LWIR imaging
Jahns Integrated optical imaging system
Okano et al. Optical shifter for a three-dimensional image by use of a gradient-index lens array
Zhou et al. Design of optical wavelength demultiplexer based on off-axis meta-lens
Hudelist et al. Nanostructured elliptical gradient-index microlenses
Zhang et al. Wide-viewing integral imaging using fiber-coupled monocentric lens array
Liang et al. Reconfigurable snapshot polarimetric imaging technique through spectral-polarization filtering
Liu et al. Cemented doublet lens with an extended focal depth
Rees et al. Some radiometric properties of gradient-index fiber lenses
Mikš et al. Double-sided telecentric zoom lens consisting of four tunable lenses with fixed distance between object and image plane
Li Passively athermalized broadband optical design using doublet combinations
Fallah et al. MTF of compound eye
Liu et al. The characteristics of compound diffractive telescope
Ducharme Microlens diffusers for efficient laser speckle generation
Okano et al. Amplified optical window for three-dimensional images
Arianpour et al. Enhanced signal coupling in wide-field fiber-coupled imagers