[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Wang et al., 2018 - Google Patents

First demonstration of ultra-low-noise long-haul 110-km MDM+ WDM transmission of orbital angular momentum (OAM) modes with 1st/2nd-order distributed Raman …

Wang et al., 2018

Document ID
4540786151687860169
Author
Wang L
Li J
Cai C
Zhou W
Zhu L
Wang A
Du J
Ma L
He Z
Li M
Wang J
Publication year
Publication venue
2018 European Conference on Optical Communication (ECOC)

External Links

Snippet

We experimentally demonstrate the first record long-single-span MDM+ WDM transmission of 3 orbital angular momentum (OAM) modes and 22 wavelength channels in 110-km large- core fiber without using MIMO-DSP assisted by homemade all-fiber OAM (de) multiplexer …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2543Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
    • H04B10/2557Cross-phase modulation [XPM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/532Polarisation modulation, e.g. polarization switching or transmission of a single data stream on two orthogonal polarizations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers i.e., optical receivers using an optical local oscillator
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • H04B10/1121One-way transmission
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/05Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06762Fibre amplifiers having a specific amplification band
    • H01S3/0677L-band amplifiers, i.e. amplification in the range of about 1560 nm to 1610 nm
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Similar Documents

Publication Publication Date Title
Sakaguchi et al. 109-Tb/s (7× 97× 172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber
Masuda et al. 20.4-Tb/s (204× 111 Gb/s) transmission over 240 km using bandwidth-maximized hybrid Raman/EDFAs
Rademacher et al. 172 Tb/s C+ L band transmission over 2040 km strongly coupled 3-core fiber
Puttnam et al. 1 Pb/s Transmission in a 125μm diameter 4-core MCF
Li et al. Ultra-low-noise mode-division multiplexed WDM transmission over 100-km FMF based on a second-order few-mode Raman amplifier
Zhu et al. First demonstration of orbital angular momentum (OAM) distributed Raman amplifier over 18-km OAM fiber with data-carrying OAM multiplexing and wavelength-division multiplexing
Bissessur et al. 80× 200 Gb/s 16-QAM unrepeatered transmission over 321 km with third order Raman amplification
Januario et al. Single-carrier 400G unrepeatered WDM transmission over 443.1 km
Zhu et al. 112-Tb/s (7× 160× 107Gb/s) space-division multiplexed DWDM transmission over a 76.8-km multicore fiber
Xu et al. 50G BPSK, 100G SP-QPSK, 200G 8QAM, 400G 64QAM ultra long single span unrepeatered transmission over 670.64 km, 653.35 km, 601.93 km and 502.13 km respectively
Hamaoka et al. 110.7-Tb/s Single-Mode-Fiber Transmission over 1040 km with High-Symbol-Rate 144-GBaud PDM-PCS-QAM Signals
Ellis et al. Enhanced superchannel transmission using phase conjugation
Shen et al. MIMO-Free $20-\text {Gb}/\mathrm {s}\times 4\times 2$ WDM-MDM Transmission Over 151.5-km Single-Span Ultra Low-Crosstalk FMFs
Yu 1.2 Tbit/s orthogonal PDM-RZ-QPSK DWDM signal transmission over 1040 km SMF-28
Wang et al. First demonstration of ultra-low-noise long-haul 110-km MDM+ WDM transmission of orbital angular momentum (OAM) modes with 1st/2nd-order distributed Raman amplifier
Luis et al. 372 Tb/s unrepeatered 213 km transmission over a 125 µm cladding diameter, 4-core MCF
Ishida et al. Transmission of 20× 20 Gb/s RZ-DQPSK signals over 5090 km with 0.53 b/s/Hz spectral efficiency
Mongardien et al. 2.6 Tb/s (26× 100Gb/s) unrepeatered transmission over 401km using PDM-QPSK with a coherent receiver
Zhou et al. 2Tb/s (20× 107 Gb/s) RZ-DQPSK straight-line transmission over 1005 km of standard single mode fiber (SSMF) without Raman amplification
Downie High-capacity long-haul transmission using ultra-low loss optical fiber
Downie 112 Gb/s PM-QPSK transmission systems with reach lengths enabled by optical fibers with ultra-low loss and very large effective area
Mongardien et al. 15.4 Tb/s C-band only unrepeatered transmission of real-time processed 200 Gb/s PDM-16 QAM over 355 km
Xiaolei et al. Experimental investigation of wavelength division multiplexing secure communications with chaotic optical channel
Huang et al. Wavelength converter for polarization-multiplexed 100-G transmission with multilevel modulation using a bismuth oxide-based nonlinear fiber
Cai et al. Gain-flattened C+ L band distributed Raman amplification for MDM and WDM transmission of orbital angular momentum (OAM) modes over 100-km large-core fiber