Ahmadnia et al., 2019 - Google Patents
Round-trip training approach for bilingually low-resource statistical machine translation systemsAhmadnia et al., 2019
View PDF- Document ID
- 442386642097172930
- Author
- Ahmadnia B
- Haffari G
- Serrano J
- Publication year
- Publication venue
- International Journal of Artificial Intelligence
External Links
Snippet
ABSTRACT Statistical Machine Translation (SMT) is making good progress in recent years. Since SMT systems are based on data-driven approach, they learn from millions or even billions of words from human-translated texts. The quality of SMT systems heavily depends …
- 238000004891 communication 0 abstract description 7
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/28—Processing or translating of natural language
- G06F17/2809—Data driven translation
- G06F17/2827—Example based machine translation; Alignment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/28—Processing or translating of natural language
- G06F17/289—Use of machine translation, e.g. multi-lingual retrieval, server side translation for client devices, real-time translation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/28—Processing or translating of natural language
- G06F17/2809—Data driven translation
- G06F17/2836—Machine assisted translation, e.g. translation memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/21—Text processing
- G06F17/22—Manipulating or registering by use of codes, e.g. in sequence of text characters
- G06F17/2217—Character encodings
- G06F17/2223—Handling non-latin characters, e.g. kana-to-kanji conversion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/27—Automatic analysis, e.g. parsing
- G06F17/2765—Recognition
- G06F17/277—Lexical analysis, e.g. tokenisation, collocates
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/28—Processing or translating of natural language
- G06F17/2809—Data driven translation
- G06F17/2818—Statistical methods, e.g. probability models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/28—Processing or translating of natural language
- G06F17/2872—Rule based translation
- G06F17/2881—Natural language generation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/28—Processing or translating of natural language
- G06F17/2863—Processing of non-latin text
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/28—Processing or translating of natural language
- G06F17/2809—Data driven translation
- G06F17/2845—Using very large corpora, e.g. the world wide web [WWW]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/27—Automatic analysis, e.g. parsing
- G06F17/2705—Parsing
- G06F17/271—Syntactic parsing, e.g. based on context-free grammar [CFG], unification grammars
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30634—Querying
- G06F17/30657—Query processing
- G06F17/3066—Query translation
- G06F17/30669—Translation of the query language, e.g. Chinese to English
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/21—Text processing
- G06F17/24—Editing, e.g. insert/delete
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/27—Automatic analysis, e.g. parsing
- G06F17/273—Orthographic correction, e.g. spelling checkers, vowelisation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Harnessing pre-trained neural networks with rules for formality style transfer | |
CN104750687B (en) | Improve method and device, machine translation method and the device of bilingualism corpora | |
US8886514B2 (en) | Means and a method for training a statistical machine translation system utilizing a posterior probability in an N-best translation list | |
US8874433B2 (en) | Syntax-based augmentation of statistical machine translation phrase tables | |
Dhariya et al. | A hybrid approach for Hindi-English machine translation | |
CN101458681A (en) | Voice translation method and voice translation apparatus | |
WO2010046782A2 (en) | Hybrid machine translation | |
CN102799579A (en) | Statistical machine translation method with error self-diagnosis and self-correction functions | |
Xiao et al. | Document-level consistency verification in machine translation | |
Xu et al. | Do we need Chinese word segmentation for statistical machine translation? | |
Ahmadnia et al. | Round-trip training approach for bilingually low-resource statistical machine translation systems | |
Kumar et al. | Factored Statistical Machine Translation System for English to Tamil Language. | |
CN105593845A (en) | Apparatus for generating self-learning alignment-based alignment corpus, method therefor, apparatus for analyzing destructive expression morpheme by using alignment corpus, and morpheme analysis method therefor | |
Tennage et al. | Transliteration and byte pair encoding to improve tamil to sinhala neural machine translation | |
Tennage et al. | Neural machine translation for sinhala and tamil languages | |
Ravi | Scalable decipherment for machine translation via hash sampling | |
CN112101047A (en) | Machine translation method for matching language-oriented precise terms | |
Mukta et al. | A phrase-based machine translation from English to Bangla using rule-based approach | |
Ahmadnia et al. | Statistical machine translation for bilingually low-resource scenarios: A round-tripping approach | |
Ngo et al. | Combining advanced methods in japanese-vietnamese neural machine translation | |
Cheng | Joint Training for Neural Machine Translation | |
Zhou et al. | Constrained phrase-based translation using weighted finite-state transducers | |
Yılmaz et al. | TÜBİTAK Turkish-English submissions for IWSLT 2013 | |
Ceauşu et al. | Addressing smt data sparseness when translating into morphologically-rich languages | |
Dandapat et al. | Using example-based MT to support statistical MT when translating homogeneous data in a resource-poor setting |