Song et al., 2015 - Google Patents
Performance analysis of antenna selection in two-way relay networksSong et al., 2015
View PDF- Document ID
- 4419522450484862574
- Author
- Song K
- Ji B
- Huang Y
- Xiao M
- Yang L
- Publication year
- Publication venue
- IEEE Transactions on Signal Processing
External Links
Snippet
We investigate the performance of multi-antenna two-way relay networks, where both amplify-and-forward (AF) and decode-and-forward (DF) relaying strategies are considered. First an antenna selection scheme among all nodes is proposed based on maximizing the …
- 238000004088 simulation 0 abstract description 21
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/022—Site diversity; Macro-diversity
- H04B7/024—Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/155—Ground-based stations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/24—Radio transmission systems, i.e. using radiation field for communication between two or more posts
- H04B7/26—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
- H04B7/2603—Arrangements for wireless physical layer control
- H04B7/2606—Arrangements for base station coverage control, e.g. by using relays in tunnels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/02—Arrangements for detecting or preventing errors in the information received by diversity reception
- H04L1/06—Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
- H04L1/0618—Space-time coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0076—Distributed coding, e.g. network coding, involving channel coding
- H04L1/0077—Cooperative coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L2001/0092—Error control systems characterised by the topology of the transmission link
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchical pre-organized networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W72/00—Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
- H04W72/12—Dynamic Wireless traffic scheduling; Dynamically scheduled allocation on shared channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/04—Terminal devices adapted for relaying to or from another terminal or user
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Song et al. | Performance analysis of antenna selection in two-way relay networks | |
Jee et al. | A coordinated direct AF/DF relay-aided NOMA framework for low outage | |
Ji et al. | On the study of half-duplex asymmetric two-way relay transmission using an amplify-and-forward relay | |
Wei et al. | Performance analysis of a hybrid downlink-uplink cooperative NOMA scheme | |
Hoang et al. | Outage probability and ergodic capacity of user clustering and beamforming MIMO-NOMA relay system with imperfect CSI over Nakagami-$ m $ fading channels | |
Zhao et al. | A special case of multi-way relay channel: When beamforming is not applicable | |
Peng et al. | Cooperative network coding with MIMO transmission in wireless decode-and-forward relay networks | |
Xu et al. | On the equivalence of two optimal power-allocation schemes for A-TWRC | |
Zhang et al. | Multi-user scheduling for network coded two-way relay channel in cellular systems | |
Khan et al. | Modulation based non-orthogonal multiple access for 5G resilient networks | |
Zheng et al. | Robust peer-to-peer collaborative-relay beamforming with ellipsoidal CSI uncertainties | |
You et al. | Joint relay selection and network coding for error-prone two-way decode-and-forward relay networks | |
Fawaz et al. | When network coding and dirty paper coding meet in a cooperative ad hoc network | |
Aksu et al. | Reliable multi-hop routing with cooperative transmissions in energy-constrained networks | |
Akoum et al. | Cognitive cooperation for the downlink of frequency reuse small cells | |
Liu et al. | Secrecy performance of finite-sized cooperative full-duplex relay systems with unreliable backhauls | |
Alqahtani et al. | Outage probability of indoor-outdoor C-NOMA enabled UAV-Relay over κμ fading | |
Yang et al. | On the throughput of MIMO relay wireless network with receive antenna selection | |
Maham et al. | Interference analysis and management for spatially reused cooperative multihop wireless networks | |
Toregozhin et al. | Performance of STAR-RIS-aided cooperative NOMA networks under Nakagami-m fading | |
Song et al. | Antenna selection for two-way full duplex massive MIMO networks with amplify-and-forward relay | |
Shirzadian Gilan et al. | Diversity achieving full‐duplex DF relaying with joint relay‐antenna selection under Nakagami‐m fading environment | |
Zeng et al. | Opportunistic cooperation for multi-antenna multi-relay networks | |
Song et al. | Performance analysis of antenna selection in two-way decode-and-forward relay networks | |
Chavan et al. | Performance analysis of cell-center users in SM-based cooperative spectrum sharing systems |