Ni et al., 2023 - Google Patents
Joint Tx and Rx Look-Up-Table Based Nonlinear Distortion Mitigation in Reduced State MLSE for 180 Gbit/s PAM-8 IM-DD SystemNi et al., 2023
- Document ID
- 4414627245557469533
- Author
- Ni W
- Li F
- Wang W
- Zou D
- Sui Q
- Li Z
- Publication year
- Publication venue
- Journal of Lightwave Technology
External Links
Snippet
Inter-symbol-interference (ISI) and nonlinear distortions are the major impairments in high- speed short-reach intensity modulation and direct detection (IM-DD) systems. Linear ISI can be well addressed with linear equalizer cascaded maximum likelihood sequence estimation …
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03178—Arrangements involving sequence estimation techniques
- H04L25/03248—Arrangements for operating in conjunction with other apparatus
- H04L25/03254—Operation with other circuitry for removing intersymbol interference
- H04L25/03261—Operation with other circuitry for removing intersymbol interference with impulse-response shortening filters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/03433—Arrangements for removing intersymbol interference characterised by equaliser structure
- H04L2025/03439—Fixed structures
- H04L2025/03445—Time domain
- H04L2025/03471—Tapped delay lines
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03012—Arrangements for removing intersymbol interference operating in the time domain
- H04L25/03019—Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/03592—Adaptation methods
- H04L2025/03598—Algorithms
- H04L2025/03681—Control of adaptation
- H04L2025/037—Detection of convergence state
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03343—Arrangements at the transmitter end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/69—Electrical arrangements in the receiver
- H04B10/697—Arrangements for reducing noise and distortion
- H04B10/6971—Arrangements for reducing noise and distortion using equalisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/0335—Arrangements for removing intersymbol interference characterised by the type of transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2543—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
- H04B10/2557—Cross-phase modulation [XPM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
- H04B10/505—Laser transmitters using external modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/54—Intensity modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/67—Optical arrangements in the receiver
- H04B10/676—Optical arrangements in the receiver for all-optical demodulation of the input optical signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers i.e., optical receivers using an optical local oscillator
- H04B10/616—Details of the electronic signal processing in coherent optical receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/06—Dc level restoring means; Bias distortion correction decision circuits providing symbol by symbol detection
- H04L25/061—Dc level restoring means; Bias distortion correction decision circuits providing symbol by symbol detection providing hard decisions only; arrangements for tracking or suppressing unwanted low frequency components, e.g. removal of dc offset
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/38—Synchronous or start-stop systems, e.g. for Baudot code
- H04L25/40—Transmitting circuits; Receiving circuits
- H04L25/49—Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels; Baseband coding techniques specific to data transmission systems
- H04L25/497—Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels; Baseband coding techniques specific to data transmission systems by correlative coding, e.g. partial response coding or echo modulation coding transmitters and receivers for partial response systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tang et al. | Digital pre-and post-equalization for C-band 112-Gb/s PAM4 short-reach transport systems | |
Wang et al. | Adaptive channel-matched detection for C-band 64-Gbit/s optical OOK system over 100-km dispersion-uncompensated link | |
Xiang et al. | Advanced DSP enabled C-band 112 Gbit/s/λ PAM-4 transmissions with severe bandwidth-constraint | |
Zou et al. | 100G PAM-6 and PAM-8 signal transmission enabled by pre-chirping for 10-km intra-DCI utilizing MZM in C-band | |
Ge et al. | Threshold-based pruned retraining Volterra equalization for 100 Gbps/lane and 100-m optical interconnects based on VCSEL and MMF | |
Zhou et al. | Burst-error-propagation suppression for decision-feedback equalizer in field-trial submarine fiber-optic communications | |
Zhu et al. | Beyond 200G direct detection transmission with nyquist asymmetric TWIN-SSB signal at C-band | |
Xu et al. | Decoding of 10-G optics-based 50-Gb/s PAM-4 signal using simplified MLSE | |
Ni et al. | Joint Tx and Rx Look-Up-Table Based Nonlinear Distortion Mitigation in Reduced State MLSE for 180 Gbit/s PAM-8 IM-DD System | |
Sharif et al. | Modulation schemes for single-laser 100 Gb/s links: Single-carrier | |
Yamamoto et al. | Spectral-shaping technique based on nonlinear-coded-modulation for short-reach optical transmission | |
Chen et al. | 50-km C-band transmission of 50-Gb/s PAM4 using 10-G EML and complexity-reduced adaptive equalization | |
Zou et al. | Simplified THP and M-log-MAP decoder based faster than Nyquist signaling for intra-datacenter interconnect | |
Wang et al. | Suppressed noise enhancement equalization combined with nonlinear-MLSE techniques for bandwidth-limitation IM/DD System | |
Zhang et al. | Improved weighted Volterra DFE for C-band 100-Gbit/s PAM-4 transmission over 60-km SSMF | |
Xu et al. | Pulse-overlapping super-Nyquist WDM system | |
Yan et al. | Adaptive Partial-Response Neural Network Equalization for Bandwidth-Limited PAM Transmission in Intra-Datacenter Interconnect | |
Zou et al. | Colored Noise Suppressed FTN vs PS in Peak Power Constrained IM-DD PAM Systems | |
Wu et al. | C-band 112-Gb/s PAM-4 transmission over 50-km SSMF using absolute-term based nonlinear FFE-DFE | |
Reza et al. | Blind nonlinearity mitigation of 10G DMLs using sparse Volterra equalizer in IM/DD PAM-4 transmission systems | |
Taniguchi et al. | 255-Gbps PAM-8 O-band transmission through 10-km SMF under 14-GHz bandwidth limitation using MLSE based on nonlinear channel estimation with cutdown Volterra kernels | |
Yan et al. | Nonlinear States-Truncated BCJR Equalization With States and Complexity Reduction for 100-Gaud PAM-8 IM/DD Transmission | |
Wu et al. | High-Speed Dispersion-Unmanaged DML-Based IM-DD Optics at C-band with Advanced Nonlinear Equalization and Noise Whitening | |
Huo et al. | Modified DDFTN algorithm for band-limited short-reach optical interconnects | |
Liang et al. | 56 Gbit/s OOK signal in C-band over 20 km dispersion-uncompensated link transmission with receiver-side EDC algorithm |