Franklin et al., 1994 - Google Patents
Hypergraph coloring and reconfigured RAM testingFranklin et al., 1994
- Document ID
- 4343116884641782476
- Author
- Franklin M
- Saluja K
- Publication year
- Publication venue
- IEEE transactions on Computers
External Links
Snippet
RAM decoders are designed with a view to minimize the overall silicon area and critical path lengths. This can result in designs in which-physically adjacent rows (and columns) are not logically adjacent. Even if physically adjacent rows (and columns) are logically adjacent …
- 238000004040 coloring 0 title abstract description 116
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C29/18—Address generation devices; Devices for accessing memories, e.g. details of addressing circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C29/44—Indication or identification of errors, e.g. for repair
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C29/38—Response verification devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/10—Test algorithms, e.g. memory scan (MScan) algorithms; Test patterns, e.g. checkerboard patterns
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5045—Circuit design
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/3185—Reconfiguring for testing, e.g. LSSD, partitioning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/22—Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
- G06F11/26—Functional testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/3183—Generation of test inputs, e.g. test vectors, patterns or sequence
- G01R31/318385—Random or pseudo-random test pattern
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
- G11C29/70—Masking faults in memories by using spares or by reconfiguring
- G11C29/72—Masking faults in memories by using spares or by reconfiguring with optimized replacement algorithms
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
- G11C29/70—Masking faults in memories by using spares or by reconfiguring
- G11C29/86—Masking faults in memories by using spares or by reconfiguring in serial access memories, e.g. shift registers, CCDs, bubble memories
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
- G11C29/006—Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation at wafer scale level, i.e. WSI
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2217/00—Indexing scheme relating to computer aided design [CAD]
- G06F2217/70—Fault tolerant, i.e. transient fault suppression
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/41—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/31712—Input or output aspects
- G01R31/31717—Interconnect testing
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5301156A (en) | Configurable self-test for embedded RAMs | |
Hayes | Detection of pattern-sensitive faults in random-access memories | |
EP0350538B1 (en) | Memory device containing a static RAM memory that is adapted for executing a self-test, and integrated circuit containing such a device as an embedded static RAM memory | |
Hayes | Testing memories for single-cell pattern-sensitive faults | |
US20090300440A1 (en) | Data controlling in the mbist chain architecture | |
Lee et al. | A memory built-in self-repair scheme based on configurable spares | |
USRE34445E (en) | Self-testing dynamic RAM | |
Chang et al. | Diagnosis and repair of memory with coupling faults | |
Cheng et al. | Neighborhood pattern-sensitive fault testing and diagnostics for random-access memories | |
Hamdioui et al. | Efficient tests for realistic faults in dual-port SRAMs | |
Van De Goor et al. | Effective march algorithms for testing single-order addressed memories | |
Van de Goor et al. | A systematic method for modifying march tests for bit-oriented memories into tests for word-oriented memories | |
Cockburn et al. | Synthesized transparent BIST for detecting scrambled pattern-sensitive faults in RAMs | |
Franklin et al. | Hypergraph coloring and reconfigured RAM testing | |
Hamdioui et al. | Thorough testing of any multiport memory with linear tests | |
US8046643B2 (en) | Transport subsystem for an MBIST chain architecture | |
Franklin et al. | Testing reconfigured RAM's and scrambled address RAM's for pattern sensitive faults | |
Zhu et al. | Analysis of testable PLA designs | |
Niggemeyer et al. | Diagnostic testing of embedded memories based on output tracing | |
Libeskind-Hadas et al. | Fault covering problems in reconfigurable VLSI systems | |
Niggemeyer et al. | Automatic generation of diagnostic memory tests based on fault decomposition and output tracing | |
Huang et al. | A parallel transparent BIST method for embedded memory arrays by tolerating redundant operations | |
JP7427000B2 (en) | Digital circuit testing and analysis module, system and method thereof | |
US20020147559A1 (en) | Method for testing integrated logic circuits | |
Amin et al. | New fault models and efficient BIST algorithms for dual-port memories |