Aliaga et al., 2012 - Google Patents
Solving dense generalized eigenproblems on multi-threaded architecturesAliaga et al., 2012
View PDF- Document ID
- 4345956263373773006
- Author
- Aliaga J
- Bientinesi P
- Davidović D
- Di Napoli E
- Igual F
- Quintana-Orti E
- Publication year
- Publication venue
- Applied mathematics and computation
External Links
Snippet
We compare two approaches to compute a fraction of the spectrum of dense symmetric definite generalized eigenproblems: one is based on the reduction to tridiagonal form, and the other on the Krylov-subspace iteration. Two large-scale applications, arising in …
- 238000000329 molecular dynamics simulation 0 abstract description 7
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
- G06F17/13—Differential equations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/30003—Arrangements for executing specific machine instructions
- G06F9/30007—Arrangements for executing specific machine instructions to perform operations on data operands
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/14—Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
- G06F17/141—Discrete Fourier transforms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/70—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
- G06F19/708—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for data visualisation, e.g. molecular structure representations, graphics generation, display of maps or networks or other visual representations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/44—Arrangements for executing specific programmes
- G06F9/455—Emulation; Software simulation, i.e. virtualisation or emulation of application or operating system execution engines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/16—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for molecular structure, e.g. structure alignment, structural or functional relations, protein folding, domain topologies, drug targeting using structure data, involving two-dimensional or three-dimensional structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/70—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
- G06F19/701—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for molecular modelling, e.g. calculation and theoretical details of quantum mechanics, molecular mechanics, molecular dynamics, Monte Carlo methods, conformational analysis or the like
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformations of program code
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/34—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment
- G06F11/3457—Performance evaluation by simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Torrado et al. | Cobaya: Code for Bayesian Analysis of hierarchical physical models | |
Li et al. | Numerical assessment for accuracy and GPU acceleration of TD-DMRG time evolution schemes | |
Friedrichs et al. | Accelerating molecular dynamic simulation on graphics processing units | |
Agullo et al. | LU factorization for accelerator-based systems | |
Haidar et al. | A framework for batched and GPU-resident factorization algorithms applied to block householder transformations | |
Anderson et al. | A predictive model for solving small linear algebra problems in gpu registers | |
Ma et al. | Optimizing sparse tensor times matrix on GPUs | |
Serban et al. | A GPU‐based preconditioned Newton‐Krylov solver for flexible multibody dynamics | |
Bastian et al. | Hardware-based efficiency advances in the EXA-DUNE project | |
Peise et al. | On the performance prediction of BLAS-based tensor contractions | |
Haidar et al. | Toward a high performance tile divide and conquer algorithm for the dense symmetric eigenvalue problem | |
Aliaga et al. | Solving dense generalized eigenproblems on multi-threaded architectures | |
Schieffer et al. | Accelerating drug discovery in AutoDock-GPU with tensor cores | |
Demeter | Solving the Maxwell–Bloch equations for resonant nonlinear optics using GPUs | |
Bravo et al. | High level synthesis FPGA implementation of the Jacobi algorithm to solve the eigen problem | |
Suzuki et al. | A dissection solver with kernel detection for symmetric finite element matrices on shared memory computers | |
Davina et al. | MPI-CUDA parallel linear solvers for block-tridiagonal matrices in the context of SLEPc’s eigensolvers | |
Hung et al. | GPU-QJ, a fast method for calculating root mean square deviation (RMSD) after optimal superposition | |
Thies et al. | Towards an exascale enabled sparse solver repository | |
Li et al. | An experimental evaluation of extreme learning machines on several hardware devices | |
Goebel et al. | Multiprecision block-jacobi for iterative triangular solves | |
Steiger et al. | Using automatic differentiation to compute derivatives for a quantum-chemical computer program | |
Shkurti et al. | Acceleration of coarse grain molecular dynamics on GPU architectures | |
Ji et al. | An implementation of block conjugate gradient algorithm on CPU-GPU processors | |
Miranda et al. | Efficient parallelization of perturbative Monte Carlo QM/MM simulations in heterogeneous platforms |