Aftabuzzaman et al., 2024 - Google Patents
Photo‐Rechargeable Asymmetric Supercapacitors Exceeding Light‐to‐Charge Storage Efficiency over 21% under Indoor LightAftabuzzaman et al., 2024
- Document ID
- 4319172924878548288
- Author
- Aftabuzzaman M
- Masud
- Zhou H
- Kim H
- Kang Y
- Kim H
- Publication year
- Publication venue
- Small
External Links
Snippet
Photo‐rechargeable energy storage devices are appealing for substantial research attention because of their possible applications in the Internet of Things (IoT) and low‐powered miniaturized portable electronics. However, due to the incompatibility of the photovoltaics …
- 238000003860 storage 0 title abstract description 22
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/13—Ultracapacitors, supercapacitors, double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/54—Material technologies
- Y02E10/542—Dye sensitized solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/54—Material technologies
- Y02E10/549—Material technologies organic PV cells
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2027—Light-sensitive devices comprising an oxide semiconductor electrode
- H01G9/2031—Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors [EDLCs]; Processes specially adapted for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their materials
- H01G11/32—Carbon-based, e.g. activated carbon materials
- H01G11/42—Powders or particles, e.g. composition thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M14/00—Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zeng et al. | Integrated photorechargeable energy storage system: next‐generation power source driving the future | |
Zeng et al. | Printable zinc-ion hybrid micro-capacitors for flexible self-powered integrated units | |
Boruah et al. | Photo-rechargeable zinc-ion capacitor using 2D graphitic carbon nitride | |
Paolella et al. | Light-assisted delithiation of lithium iron phosphate nanocrystals towards photo-rechargeable lithium ion batteries | |
Liang et al. | MoS2‐based all‐purpose fibrous electrode and self‐powering energy fiber for efficient energy harvesting and storage | |
Li et al. | Zinc-based energy storage with functionalized carbon nanotube/polyaniline nanocomposite cathodes | |
Liu et al. | A solar rechargeable battery based on polymeric charge storage electrodes | |
Liu et al. | Novel integration of perovskite solar cell and supercapacitor based on carbon electrode for hybridizing energy conversion and storage | |
Kim et al. | Indoor-light-energy-harvesting dye-sensitized photo-rechargeable battery | |
Mao et al. | Large‐Area, Uniform, Aligned arrays of Na3 (VO) 2 (PO4) 2F on carbon nanofiber for quasi‐solid‐state Sodium‐Ion hybrid capacitors | |
Que et al. | Pseudocapacitance of TiO2− x/CNT anodes for high‐performance quasi‐solid‐state Li‐ion and Na‐ion capacitors | |
Xie et al. | Harvesting Air and Light Energy via “All‐in‐One” Polymer Cathodes for High‐Capacity, Self‐Chargeable, and Multimode‐Switching Zinc Batteries | |
Tomai et al. | Metal-free aqueous redox capacitor via proton rocking-chair system in an organic-based couple | |
Wang et al. | Solar rechargeable batteries based on lead–organohalide electrolyte | |
Aftabuzzaman et al. | Photo‐Rechargeable Asymmetric Supercapacitors Exceeding Light‐to‐Charge Storage Efficiency over 21% under Indoor Light | |
Bi et al. | A flexible quasi‐solid‐state bifunctional device with zinc‐ion microbattery and photodetector | |
Gu et al. | Fabricating high-performance sodium ion capacitors with P2-Na0. 67Co0. 5Mn0. 5O2 and MOF-derived carbon | |
Divya et al. | Highly Reversible Na‐Intercalation into Graphite Recovered from Spent Li–Ion Batteries for High‐Energy Na‐Ion Capacitor | |
Zhang et al. | Photo-electrochemical enhanced mechanism enables a fast-charging and high-energy aqueous Al/MnO2 battery | |
Wang et al. | Design bifunctional nitrogen doped flexible carbon sphere electrode for dye-sensitized solar cell and supercapacitor | |
Zhao et al. | High capacity WO3 film as efficient charge collection electrode for solar rechargeable batteries | |
Scalia et al. | Portable high voltage integrated harvesting-storage device employing dye-sensitized solar module and all-solid-state electrochemical double layer capacitor | |
Li et al. | Dual-functional iodine photoelectrode enabling high performance photo-assisted rechargeable lithium iodine batteries | |
Xu et al. | High-performance flexible redox supercapacitors induced by methylene blue with a wide voltage window | |
Zhang et al. | Multiplying Light Harvest Driven by Hybrid‐Reflections 3D Electrodes Achieves High‐Availability Photo‐Charging Zinc‐Ion Batteries |