[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Addepalli et al., 2017 - Google Patents

Effect of engine parameters on mixture stratification in a wall-guided GDI engine-A quantitative CFD analysis

Addepalli et al., 2017

View PDF
Document ID
4251664431100797760
Author
Addepalli K
Mallikarjuna J
Publication year
Publication venue
SAE International Journal of Commercial Vehicles

External Links

Snippet

Today, GDI engines are becoming very popular because of better fuel economy and low exhaust emissions. The gain in fuel economy in these engines is realized only in the stratified mode of operation. In wall-guided GDI engines, the mixture stratification is realized …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Technologies for the improvement of indicated efficiency of a conventional ICE
    • Y02T10/125Combustion chambers and charge mixing enhancing inside the combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Technologies for the improvement of indicated efficiency of a conventional ICE
    • Y02T10/128Methods of operating, e.g. homogeneous charge compression ignition [HCCI], premixed charge compression ignition [PCCI]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Technologies for the improvement of indicated efficiency of a conventional ICE
    • Y02T10/123Fuel injection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/14Technologies for the improvement of mechanical efficiency of a conventional ICE
    • Y02T10/146Charge mixing enhancing and kinetic or wave energy of charge outside the combustion chamber, i.e. ICE with external or indirect fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0672Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures

Similar Documents

Publication Publication Date Title
Yang et al. Ignition and combustion simulations of spray-guided SIDI engine using Arrhenius combustion with spark-energy deposition model
Addepalli et al. Effect of engine parameters on mixture stratification in a wall-guided GDI engine-A quantitative CFD analysis
Zheng et al. Effects of split injection proportion and the second injection time on the mixture formation in a GDI engine under catalyst heating mode using stratified charge strategy
Verma et al. CFD modeling of spark ignited gasoline engines-part 2: Modeling the engine in direct injection mode along with spray validation
Basha et al. In-cylinder fluid flow, turbulence and spray models—A review
Li et al. Effects of lateral swirl combustion chamber geometries on the combustion and emission characteristics of DI diesel engines and a matching method for the combustion chamber geometry
Addepalli et al. Parametric analysis of a 4-stroke GDI engine using CFD
Badra et al. Effects of in-cylinder mixing on low octane gasoline compression ignition combustion
Gong et al. Numerical study of cold-start performances of a medium compression ratio direct-injection twin-spark plug synchronous ignition engine fueled with methanol
Hamzehloo et al. Numerical modelling of mixture formation and combustion in DISI hydrogen engines with various injection strategies
Reddy et al. Parametric study on a gasoline direct injection engine-A CFD analysis
Mobasheri et al. CFD investigation of the effects of re-entrant combustion chamber geometry in a HSDI diesel engine
Zhang et al. Numerical investigation of pre-chamber jet combustion in a light-duty gasoline engine
Han Simulation and optimization of internal combustion engines
Chang et al. Numerical investigation of the combined effect of injection angle and injection pressure in a gasoline direct injection rotary engine
Kesharwani et al. Evaluation of performance and emission characteristics of a diesel engine using split injection
Bai et al. Knocking suppression by stratified stoichiometric mixture with two-zone homogeneity in a DISI engine
Han et al. Development of a new light stratified-charge DISI combustion system for a family of engines with upfront CFD coupling with thermal and optical engine experiments
Gunasekaran et al. Effect of swirl and tumble on the stratified combustion of a disi engine-a CFD study
Zhang et al. Numerical study of the mixture formation and combustion characteristics in gasoline direct injection engines with conical spray
Jaasim et al. Computational study of stratified combustion in an optical diesel engine
Kim et al. Effects of spray patterns on the mixture formation process in multi-hole-type direct injection spark ignition (DISI) gasoline engines
Mou et al. The research of lean combustion characteristic of compound injection system of direct injection engine
Temizer et al. An experimental investigation of new chamber geometry on the combustion characteristics, performance and emissions in a light-duty diesel engine
Mojtabi Optical analysis of multi-stream GDI sprays under various engine operating conditions