Chemchem et al., 2018 - Google Patents
Deep learning and data mining classification through the intelligent agent reasoningChemchem et al., 2018
View PDF- Document ID
- 4243100725699635762
- Author
- Chemchem A
- Alin F
- Krajecki M
- Publication year
- Publication venue
- 2018 6th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW)
External Links
Snippet
Over the last few years, machine learning and data mining methods (MLDM) are constantly evolving, in order to accelerate the process of knowledge discovery from data (KDD). Today's challenge is to select only the most relevant knowledge from those extracted. The …
- 238000007418 data mining 0 title abstract description 11
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6279—Classification techniques relating to the number of classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30705—Clustering or classification
- G06F17/3071—Clustering or classification including class or cluster creation or modification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30587—Details of specialised database models
- G06F17/30595—Relational databases
- G06F17/30598—Clustering or classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
- G06N5/025—Extracting rules from data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computer systems based on specific mathematical models
- G06N7/005—Probabilistic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/04—Inference methods or devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6296—Graphical models, e.g. Bayesian networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/68—Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/18—Digital computers in general; Data processing equipment in general in which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kowsari et al. | Rmdl: Random multimodel deep learning for classification | |
Mena et al. | A survey on uncertainty estimation in deep learning classification systems from a bayesian perspective | |
Zhang et al. | Deep Learning over Multi-field Categorical Data: –A Case Study on User Response Prediction | |
Jain et al. | A comparative study of machine learning and deep learning techniques for sentiment analysis | |
Kumar et al. | A benchmark to select data mining based classification algorithms for business intelligence and decision support systems | |
US20210357680A1 (en) | Machine learning classification system | |
Chemchem et al. | Deep learning and data mining classification through the intelligent agent reasoning | |
Tanha | A multiclass boosting algorithm to labeled and unlabeled data | |
Ishfaq et al. | Empirical analysis of machine learning algorithms for multiclass prediction | |
Lydiri et al. | A performant deep learning model for sentiment analysis of climate change | |
Shyrokykh et al. | Short text classification with machine learning in the social sciences: The case of climate change on Twitter | |
US20230134798A1 (en) | Reasonable language model learning for text generation from a knowledge graph | |
US20230315982A1 (en) | Apparatuses and methods for integrated application tracking | |
Uvaliyeva et al. | The Development of the Staking-Ensemble of Methods for Analyzing Academic Data | |
Soppin et al. | Essentials of deep learning and ai: experience unsupervised learning, autoencoders, feature engineering, and time series analysis with tensorflow, keras, and scikit-learn (English Edition) | |
Dangi et al. | Analyzing the sentiments by classifying the tweets based on COVID-19 using machine learning classifiers | |
Adeyemi et al. | A stack ensemble model for the risk of breast cancer recurrence | |
Kumar et al. | A Recommendation System & Their Performance Metrics using several ML Algorithms | |
Chemchem et al. | Improving the cognitive agent intelligence by deep knowledge classification | |
Nayak et al. | Feasibility study of machine learning & AI algorithms for classifying software requirements | |
Solanki et al. | Text classification using self-structure extended multinomial Naive Bayes | |
Hemkiran et al. | Design of Automatic Credit Card Approval System Using Machine Learning | |
Ishfaq et al. | Research Article Empirical Analysis of Machine Learning Algorithms for Multiclass Prediction | |
Behl et al. | Machine learning classifiers | |
Sureja et al. | Hyper-tuned Swarm Intelligence Machine Learning-based Sentiment Analysis of Social Media |