Xiong et al., 2024 - Google Patents
I-shaped stack configuration for multi-purpose splitterXiong et al., 2024
- Document ID
- 4175028575811370596
- Author
- Xiong Z
- Wang B
- Publication year
- Publication venue
- Optics & Laser Technology
External Links
Snippet
In this paper, a high-efficiency beam splitter based on an I-shaped stack configuration under normal incidence is proposed, which can function as a multi-functional polarization- independent and a bi-functional polarization-selective beam splitter at the wavelength of …
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B6/122—Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths
- G02B6/1221—Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths made from organic materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B6/122—Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths
- G02B6/1225—Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B6/13—Integrated optical circuits characterised by the manufacturing method
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1809—Diffraction gratings with pitch less than or comparable to the wavelength
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made
- G02B1/002—Optical elements characterised by the material of which they are made made of materials engineered to provide properties not available in nature, e.g. metamaterials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/02—Optical fibre with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/285—Interference filters comprising deposited thin solid films
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B27/00—Other optical systems; Other optical apparatus
- G02B27/28—Other optical systems; Other optical apparatus for polarising
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/04—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 monomode
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Quaranta et al. | Recent advances in resonant waveguide gratings | |
Cheben et al. | Subwavelength integrated photonics | |
US11573356B2 (en) | Diffraction grating comprising double-materials structures | |
Kurosawa et al. | High-performance metasurface polarizers with extinction ratios exceeding 12000 | |
Bykov et al. | Bound states in the continuum and strong phase resonances in integrated Gires-Tournois interferometer | |
US7068903B2 (en) | Optical element using one-dimensional photonic crystal and spectroscopic device using the same | |
Zhou et al. | Polarization-independent 2× 2 high diffraction efficiency beam splitter based on two-dimensional grating | |
US6825963B2 (en) | Optical element | |
Bezus et al. | Integrated diffraction gratings on the Bloch surface wave platform supporting bound states in the continuum | |
Song et al. | Tunable Fano resonance in photonic crystal slabs | |
Kroker et al. | High efficiency two-dimensional grating reflectors with angularly tunable polarization efficiency | |
Yu et al. | Subwavelength-structure-assisted ultracompact polarization-handling components on silicon | |
Xiong et al. | I-shaped stack configuration for multi-purpose splitter | |
Lin et al. | Polarization-selective splitter with double structure periodic ridges | |
Glaser et al. | Diffractive optical isolator made of high-efficiency dielectric gratings only | |
Wu et al. | Complete redshift photonic bandgap and dual-wavelength polarization selection in periodic multilayer structure containing hyperbolic metamaterial | |
Lei et al. | Multifunctional on-chip directional coupler for spectral and polarimetric routing of Bloch surface wave | |
Maltese et al. | Towards an integrated AlGaAs waveguide platform for phase and polarisation shaping | |
US20030184845A1 (en) | Optical element using one-dimensional photonic crystal and optical device using the same | |
Liu et al. | Numerical analysis of an ultra-broadband and highly efficient beam splitter in the visible region | |
Roszkiewicz et al. | Unidirectional SPP excitation at asymmetrical two-layered metal gratings | |
Guo et al. | Quantifying robustness against sharp bending in an integrated topological interface of valley photonic crystals | |
CN111090147A (en) | Integrated optical waveguide integrated with periodic array of nano-structure | |
Huang et al. | Newly reflective bi-function beam splitter by SiO2 pencil-like arrays on silver plate | |
Matsui et al. | Experimental investigation of double-groove grating satisfying total internal reflection condition |