[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Ma et al., 2016 - Google Patents

A MEMS surface fence for wall shear stress measurement with high sensitivity

Ma et al., 2016

Document ID
4138696472929080283
Author
Ma B
Ma C
Publication year
Publication venue
Microsystem Technologies

External Links

Snippet

In this paper, an optimized micro-fabricated surface fence with high sensitivity is presented for measurement of wall shear stress. In order to improve the bending stress and thereby enhance the sensitivity of the sensor, the cantilever structure of sensor (the sensing element) …
Continue reading at link.springer.com (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using thermal effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material by electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/10Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, e.g. due to impact, work, mechanical power, or torque, adapted for special purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency in general
    • G01L3/02Rotary-transmission dynamometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more pressure values
    • G01L13/02Devices or apparatus for measuring differences of two or more pressure values using elastically-deformable members or pistons as sensing elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/006Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of fluid seismic masses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic means

Similar Documents

Publication Publication Date Title
Takahashi et al. A triaxial tactile sensor without crosstalk using pairs of piezoresistive beams with sidewall doping
Kottapalli et al. A liquid crystal polymer membrane MEMS sensor for flow rate and flow direction sensing applications
Sheplak et al. MEMS shear stress sensors: promise and progress
Takahashi et al. Differential pressure sensor using a piezoresistive cantilever
Berns et al. AeroMEMS sensor array for high-resolution wall pressure measurements
Nguyen et al. MEMS capacitive flow sensor for natural gas pipelines
Rajavelu et al. Perforated diaphragms employed piezoresistive MEMS pressure sensor for sensitivity enhancement in gas flow measurement
Huang et al. A micro-electro-mechanical-system-based thermal shear-stress sensor with self-frequency compensation
Tian et al. A MEMS SOI-based piezoresistive fluid flow sensor
Zhu et al. Sensitivity improvement of a 2D MEMS thermal wind sensor for low-power applications
Ma et al. A MEMS surface fence for wall shear stress measurement with high sensitivity
Bai et al. Cross-supported planar MEMS vector hydrophone for high impact resistance
Shen et al. Bio-inspired flexible airflow sensor with self-bended 3D hair-like configurations
Chen et al. Design and realization of sculpture-shaped ciliary MEMS vector hydrophone
Savelsberg et al. Calibration and use of a MEMS surface fence for wall shear stress measurements in turbulent flows
von Papen et al. A second generation MEMS surface fence sensor for high resolution wall shear stress measurement
Wang et al. Silicon monolithic microflow sensors: a review
Von Papen et al. A micro surface fence probe for the application in flow reversal areas
Du et al. Drag force micro solid state silicon plate wind velocity sensor
Abels et al. Bidirectional biomimetic flow sensing with antiparallel and curved artificial hair sensors
Etebari Recent innovations in wall shear stress sensor technologies
Kim et al. A piezoelectric shear stress sensor
Sadr et al. Surface shear stress measurement system for boundary layer flow over a salt playa
Schiffer et al. AeroMEMS surface fence for wall shear stress measurements in turbulent flows
Ding et al. Temperature drifts of the floating element wall shear stress sensor with capacitive sensing