[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Seifi et al., 2011 - Google Patents

Coordinated user scheduling in the multi-cell MIMO downlink

Seifi et al., 2011

Document ID
4099454952120226493
Author
Seifi N
Matthaiou M
Viberg M
Publication year
Publication venue
2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

External Links

Snippet

We propose a novel, coordinated user scheduling (CUS) algorithm for inter-cell interference (ICI) mitigation in the downlink of a multi-cell multi-user MIMO system. In the proposed algorithm, ICI mitigation is performed through the exchange of necessary channel state …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/12Dynamic Wireless traffic scheduling; Dynamically scheduled allocation on shared channel
    • H04W72/1205Schedule definition, set-up or creation
    • H04W72/1226Schedule definition, set-up or creation based on channel quality criteria, e.g. channel state dependent scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W52/00Power Management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC [Transmission power control]
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/08Wireless resource allocation where an allocation plan is defined based on quality criteria
    • H04W72/085Wireless resource allocation where an allocation plan is defined based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; Arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchical pre-organized networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Similar Documents

Publication Publication Date Title
He et al. Cell-free massive MIMO for 6G wireless communication networks
Min et al. Capacity enhancement using an interference limited area for device-to-device uplink underlaying cellular networks
EP2314116B1 (en) Method of joint resource allocation and clustering of base stations
Kela et al. Borderless mobility in 5G outdoor ultra-dense networks
Baracca et al. A dynamic joint clustering scheduling algorithm for downlink CoMP systems with limited CSI
Zhang et al. Transmission mode selection for downlink coordinated multipoint systems
Baracca et al. A dynamic clustering algorithm for downlink CoMP systems with multiple antenna UEs
Shojaeifard et al. Design, modeling, and performance analysis of multi-antenna heterogeneous cellular networks
KR102027914B1 (en) Method and apparatus for adaptive inter-cell interference canellation for wireless communication system
Cheikh et al. Analytical joint processing multi-point cooperation performance in Rayleigh fading
Zhang et al. Rate adaptation for downlink massive MIMO networks and underlaid D2D links: A learning approach
Mashdour et al. Clustering and scheduling with fairness based on information rates for cell-free mimo networks
Apelfröjd et al. Design and measurement-based evaluations of coherent JT CoMP: a study of precoding, user grouping and resource allocation using predicted CSI
Ramprashad et al. A joint scheduling and cell clustering scheme for MU-MIMO downlink with limited coordination
CN101989869B (en) Joint pre-coding and power control method for multi-antenna cellular network
Seifi et al. Coordinated user scheduling in the multi-cell MIMO downlink
Hosein et al. On the performance of downlink beamforming with synchronized beam cycles
Björnson et al. Optimality properties and low-complexity solutions to coordinated multicell transmission
Asgharimoghaddam et al. Decentralized multi-cell beamforming with QoS guarantees via large system analysis
Zamani et al. Beamforming optimization with hybrid association in c-rans under a limited backhaul
Abu-alhiga et al. Implicit pilot-borne interference feedback for multiuser MIMO TDD systems
Hosseini et al. Optimizing large-scale MIMO cellular downlink: Multiplexing, diversity, or interference nulling?
Jaramillo-Ramirez et al. Downlink beamforming in multi-antenna two-tier networks with user selection
Han et al. Distributed coordinated multi-point downlink transmission with over-the-air communication
Kaleva et al. Decentralized joint precoding for WSRMax with pilot aided beamformer estimation