Lai et al., 2003 - Google Patents
A fast fractal image coding based on kick-out and zero contrast conditionsLai et al., 2003
View PDF- Document ID
- 4036779908052505944
- Author
- Lai C
- Lam K
- Siu W
- Publication year
- Publication venue
- IEEE transactions on Image Processing
External Links
Snippet
A fast algorithm for fractal image coding based on a single kick-out condition and the zero contrast prediction is proposed in this paper. The single kick-out condition can avoid a large number of range-domain block matches when finding the best matched domain block. An …
- 238000004422 calculation algorithm 0 abstract description 48
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/14—Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
- G06F17/147—Discrete orthonormal transforms, e.g. discrete cosine transform, discrete sine transform, and variations therefrom, e.g. modified discrete cosine transform, integer transforms approximating the discrete cosine transform
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/61—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T9/00—Image coding, e.g. from bit-mapped to non bit-mapped
- G06T9/008—Vector quantisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/63—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using sub-band based transform, e.g. wavelets
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/42—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/90—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
- H04N19/94—Vector quantisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T9/00—Image coding, e.g. from bit-mapped to non bit-mapped
- G06T9/004—Predictors, e.g. intraframe, interframe coding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T9/00—Image coding, e.g. from bit-mapped to non bit-mapped
- G06T9/001—Model-based coding, e.g. wire frame
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T9/00—Image coding, e.g. from bit-mapped to non bit-mapped
- G06T9/007—Transform coding, e.g. discrete cosine transform
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lai et al. | A fast fractal image coding based on kick-out and zero contrast conditions | |
Jia et al. | Content-aware convolutional neural network for in-loop filtering in high efficiency video coding | |
Hürtgen et al. | Fast hierarchical codebook search for fractal coding of still images | |
Farrelle | Recursive block coding for image data compression | |
US5184316A (en) | System for very efficiently coding by performing interblock and intrablock normalization | |
Kekre et al. | Fast codebook search algorithm for vector quantization using sorting technique | |
US7379500B2 (en) | Low-complexity 2-power transform for image/video compression | |
Balasubramanian et al. | Sequential scalar quantization of vectors: An analysis | |
Ukrit et al. | Effective lossless compression for medical image sequences using composite algorithm | |
US20150296207A1 (en) | Method and Apparatus for Comparing Two Blocks of Pixels | |
Chang et al. | Fast search algorithm for vector quantisation without extra look-up table using declustered subcodebooks | |
Caso et al. | Fast methods for fractal image encoding | |
Chen et al. | An adaptive vector quantizer based on the gold-washing method for image compression | |
Hu et al. | Efficient greyscale image compression technique based on vector quantization | |
Bhaskaran et al. | Optimal piecewise-linear compression of images | |
Lai et al. | An effieient algorithm for fractal image coding using kick-out and zero contrast conditions | |
Rizvi et al. | Finite-state residual vector quantization using a tree-structured competitive neural network | |
de Oliveira et al. | Simplified entropy model for reduced-complexity end-to-end variational autoencoder with application to on-board satellite image compression | |
Kumar et al. | Image Compression With Efficient Codebook Initialization Using LBG algorithm | |
Al Falahi et al. | Comparitive Analysis and Findings on Dct & Lbg Compression Techniques | |
JP2629035B2 (en) | Image coding processor | |
Salih | Fractal coding technique based on different block size | |
Chang et al. | Image coding by a neural net classification process | |
JP2002135771A (en) | Image coding apparatus | |
Omara et al. | m-BRe: New Variants for the Backward Replacement Approach to Enhance the Compression Capabilities of the Forward Greedy Pursuit |