Narupai et al., 2019 - Google Patents
Low‐Temperature, Rapid Copolymerization of Acrylic Acid and Sodium Acrylate in WaterNarupai et al., 2019
View PDF- Document ID
- 4019601747172919800
- Author
- Narupai B
- Willenbacher J
- Bates M
- Barbon S
- Zerdan R
- McGrath A
- Lee I
- Anastasaki A
- Discekici E
- Laitar D
- Van Dyk A
- Kalantar T
- Ren J
- Hawker C
- Publication year
- Publication venue
- Journal of Polymer Science Part A: Polymer Chemistry
External Links
Snippet
Regulating the aqueous polymerization of acrylic acid (AA) is a major opportunity for future materials design, requiring the development of scalable, industry‐oriented procedures that afford modest molar mass and dispersity control without long reaction times and …
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid   OC(=O)C=C 0 title abstract description 40
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F26/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
- C08F26/06—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/52—Amides or imides
- C08F220/54—Amides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/38—Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F12/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F12/02—Monomers containing only one unsaturated aliphatic radical
- C08F12/04—Monomers containing only one unsaturated aliphatic radical containing one ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F293/00—Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
- C08F293/005—Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F226/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
- C08F226/06—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbon having only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F20/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F138/00—Homopolymers of compounds having one or more carbon-to-carbon triple bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F36/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2810/00—Chemical modification of a polymer
- C08F2810/20—Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Davis et al. | Preparation of block copolymers of polystyrene and poly (t‐butyl acrylate) of various molecular weights and architectures by atom transfer radical polymerization | |
Liu et al. | Controlled radical polymerization of N‐acryloylglycinamide and UCST‐type phase transition of the polymers | |
Hong et al. | Controlled polymerization of acrylic acid under 60Co irradiation in the presence of dibenzyl trithiocarbonate | |
JP2014237856A (en) | Improvement for control over controlled radical polymerization processes | |
Fan et al. | Preparation of high cis‐1, 4 polyisoprene with narrow molecular weight distribution via coordinative chain transfer polymerization | |
Bai et al. | A very useful redox initiator for aqueous RAFT polymerization of n‐isopropylacrylamide and acrylamide at room temperature | |
Rocha et al. | Facile Synthesis of Well‐Defined Telechelic Alkyne‐Terminated Polystyrene in Polar Media Using ATRP With Mixed Fe/Cu Transition Metal Catalyst | |
Farrokhi et al. | Controlled radical copolymerization of vinyl acetate and dibutyl maleate by iodine transfer radical polymerization | |
Chen et al. | Copper (0)‐mediated living radical polymerization of acrylonitrile at room temperature | |
Haridharan et al. | Controlled polymerization of carbazole‐based vinyl and methacrylate monomers at ambient temperature: A comparative study through ATRP, SET, and SET‐RAFT polymerizations | |
Kermagoret et al. | Expanding the scope of controlled radical polymerization via cobalt–tellurium radical exchange reaction | |
Max et al. | Double Hydrophilic Poly (ethylene oxide)‐block‐Poly (dehydroalanine) Block Copolymers: Comparison of Two Different Synthetic Routes | |
Hu et al. | Synthesis of well‐defined glycoconjugate polyacrylamides via preactivated polymers prepared by ATRP | |
Wang et al. | Catalytic Halogen Exchange in Miniemulsion ARGET ATRP: A Pathway to Well‐Controlled Block Copolymers | |
Xu et al. | Synthesis of poly (vinyl acetate) by degenerative transfer polymerization in the presence of iodine | |
Hua et al. | Dithiocarbamate mediated controlled/living free radical polymerization of methyl acrylate under 60Co γ‐ray irradiation: Conjugation effect of N‐group | |
Wang et al. | Hexamethylphosphoramide as a highly reactive catalyst for the reversible-deactivation radical polymerization of MMA with an in situ formed alkyl iodide initiator | |
Oliveira et al. | Self‐degassing SARA ATRP mediated by Na2S2O4 with no external additives | |
Nguyen et al. | Controlled radical polymerization of a trialkylsilyl methacrylate by reversible addition–fragmentation chain transfer polymerization | |
Narupai et al. | Low‐Temperature, Rapid Copolymerization of Acrylic Acid and Sodium Acrylate in Water | |
Yamamoto et al. | Synthesis and functionalities of poly (N‐vinylalkylamide). XII. Synthesis and thermosensitive property of poly (vinylamine) copolymer prepared from poly (N‐vinylformamide‐co‐N‐vinylisobutyramide) | |
Zeng et al. | Atom‐Transfer Radical Polymerization of 2‐(N, N‐Dimethylamino) ethyl Acrylate | |
Ye et al. | Highly efficient reversible addition–fragmentation chain‐transfer polymerization in ethanol/water via flow chemistry | |
McLeod et al. | Atom transfer radical polymerization of an epoxide‐containing monomer, 4‐vinylphenyloxirane, employing low concentration of catalyst: synthesis of linear and star‐shaped macromolecules | |
Al-Roomi et al. | Assessment of novel maleic anhydride copolymers prepared via nitroxide-mediated radical polymerization as CaSO4 crystal growth inhibitors |