[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a336466 -id:a336466
     Sort: relevance | references | number | modified | created      Format: long | short | data
Lexicographically earliest infinite sequence such that a(i) = a(j) => A336466(i) = A336466(j) and A336158(i) = A336158(j), for all i, j >= 1.
+20
12
1, 1, 2, 1, 2, 2, 3, 1, 4, 2, 5, 2, 3, 3, 6, 1, 2, 4, 7, 2, 8, 5, 9, 2, 4, 3, 10, 3, 11, 6, 12, 1, 13, 2, 8, 4, 7, 7, 8, 2, 5, 8, 14, 5, 15, 9, 16, 2, 17, 4, 6, 3, 18, 10, 13, 3, 19, 11, 20, 6, 12, 12, 21, 1, 8, 13, 22, 2, 23, 8, 24, 4, 7, 7, 15, 7, 25, 8, 26, 2, 27, 5, 28, 8, 6, 14, 29, 5, 9, 15, 19, 9, 25, 16, 19, 2, 3, 17, 30, 4, 31, 6, 32, 3, 33
OFFSET
1,3
COMMENTS
Restricted growth sequence transform of the ordered pair [A336466(n), A336158(n)].
For all i, j:
A336460(i) = A336460(j) => a(i) = a(j),
a(i) = a(j) => A329697(i) = A329697(j),
a(i) = a(j) => A336471(i) = A336471(j).
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A000265(n) = (n>>valuation(n, 2));
A336466(n) = { my(f=factor(n)); prod(k=1, #f~, if(2==f[k, 1], 1, (A000265(f[k, 1]-1))^f[k, 2])); };
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
Aux336470(n) = [A336466(n), A336158(n)];
v336470 = rgs_transform(vector(up_to, n, Aux336470(n)));
A336470(n) = v336470[n];
CROSSREFS
Cf. also A329697, A336160, A336471.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 24 2020
STATUS
approved
Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A278222(n), A336158(n), A336466(n)], for all i, j >= 1.
+20
6
1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 3, 5, 9, 3, 10, 6, 11, 2, 12, 7, 13, 4, 14, 8, 15, 1, 16, 3, 17, 5, 18, 9, 19, 3, 20, 10, 21, 6, 22, 11, 23, 2, 24, 12, 25, 7, 26, 13, 27, 4, 28, 14, 29, 8, 30, 15, 31, 1, 32, 16, 33, 3, 34, 17, 35, 5, 18, 18, 22, 9, 36, 19, 37, 3, 38, 20, 39, 10, 40, 21, 41, 6, 42, 22, 43, 11, 44, 23, 45, 2, 7, 24, 46, 12, 47, 25, 48, 7, 49
OFFSET
1,3
COMMENTS
Restricted growth sequence transform of the ordered triple [A278222(n), A336158(n), A336466(n)].
For all i, j:
A324400(i) = A324400(j) => A003602(i) = A003602(j) => a(i) = a(j),
a(i) = a(j) => A336159(i) = A336159(j),
a(i) = a(j) => A336470(i) = A336470(j) => A336471(i) = A336471(j),
a(i) = a(j) => A336472(i) = A336472(j),
a(i) = a(j) => A336473(i) = A336473(j).
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A000265(n) = (n>>valuation(n, 2));
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
A278222(n) = A046523(A005940(1+n));
A336466(n) = { my(f=factor(n)); prod(k=1, #f~, if(2==f[k, 1], 1, (A000265(f[k, 1]-1))^f[k, 2])); };
Aux336460(n) = [A278222(n), A336158(n), A336466(n)];
v336460 = rgs_transform(vector(up_to, n, Aux336460(n)));
A336460(n) = v336460[n];
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 24 2020
STATUS
approved
a(n) = A336466(n) / gcd(n-1, A336466(n)); Odd part of A340082(n).
+20
6
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 3, 1, 1, 9, 3, 1, 1, 3, 1, 5, 1, 11, 1, 1, 3, 1, 1, 1, 1, 1, 5, 3, 9, 7, 1, 1, 1, 15, 3, 1, 3, 1, 1, 1, 11, 1, 1, 1, 1, 9, 1, 3, 15, 3, 1, 1, 1, 5, 1, 3, 1, 21, 7, 5, 1, 1, 1, 11, 15, 23, 9, 1, 1, 9, 5, 1, 1, 1, 1, 3, 3
OFFSET
1,14
FORMULA
a(n) = A000265(A340082(n)).
a(n) = A336466(n) / A340084(n) = A336466(n) / gcd(n-1, A336466(n)).
For all n >= 0, a(A003961(A019565(n))) = a(A019565(2*n)) = A339901(n).
MATHEMATICA
Array[#2/GCD[#1 - 1, #2] & @@ {#, Times @@ Map[If[# <= 2, 1, (# - 1)/2^IntegerExponent[# - 1, 2]] &, Flatten[ConstantArray[#1, #2] & @@@ FactorInteger[#]]]} &, 105] (* Michael De Vlieger, Dec 29 2020 *)
PROG
(PARI)
A000265(n) = (n>>valuation(n, 2));
A336466(n) = { my(f=factor(n)); prod(k=1, #f~, if(2==f[k, 1], 1, (A000265(f[k, 1]-1))^f[k, 2])); };
A340085(n) = { my(u=A336466(n)); u/gcd(n-1, u); };
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 28 2020
STATUS
approved
Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(i) = A278222(j) and A336466(i) = A336466(j), for all i, j >= 1.
+20
5
1, 1, 2, 1, 3, 2, 4, 1, 3, 3, 5, 2, 6, 4, 7, 1, 3, 3, 8, 3, 9, 5, 10, 2, 11, 6, 12, 4, 13, 7, 14, 1, 15, 3, 6, 3, 16, 8, 17, 3, 18, 9, 19, 5, 20, 10, 21, 2, 8, 11, 12, 6, 22, 12, 23, 4, 24, 13, 25, 7, 26, 14, 27, 1, 28, 15, 29, 3, 30, 6, 31, 3, 16, 16, 20, 8, 32, 17, 33, 3, 34, 18, 35, 9, 36, 19, 37, 5, 38, 20, 39, 10, 40, 21, 41, 2, 6, 8, 42, 11, 43, 12, 44, 6, 45
OFFSET
1,3
COMMENTS
Restricted growth sequence transform of the ordered pair [A278222(n), A336466(n)].
For all i, j: A336460(i) = A336460(j) => a(i) = a(j).
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
A278222(n) = A046523(A005940(1+n));
A000265(n) = (n>>valuation(n, 2));
A336466(n) = { my(f=factor(n)); prod(k=1, #f~, if(2==f[k, 1], 1, (A000265(f[k, 1]-1))^f[k, 2])); };
Aux336472(n) = [A278222(n), A336466(n)];
v336472 = rgs_transform(vector(up_to, n, Aux336472(n)));
A336472(n) = v336472[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 24 2020
STATUS
approved
a(n) = A336466(A163511(n)).
+20
5
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 3, 1, 3, 3, 5, 1, 1, 1, 1, 1, 1, 1, 27, 1, 1, 1, 9, 1, 9, 9, 25, 1, 1, 1, 3, 1, 3, 3, 15, 1, 3, 3, 5, 3, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 81, 1, 1, 1, 27, 1, 27, 27, 125, 1, 1, 1, 9, 1, 9, 9, 75, 1, 9, 9, 25, 9, 25, 25, 9, 1, 1, 1, 3, 1
OFFSET
0,16
LINKS
FORMULA
For all n >= 1, a(n) = a(2*n) = a(A000265(n)).
PROG
(PARI)
A000265(n) = (n>>valuation(n, 2));
A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
A336466(n) = { my(f=factor(n)); prod(k=1, #f~, A000265(f[k, 1]-1)^f[k, 2]); };
CROSSREFS
Cf. also A365427.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 03 2023
STATUS
approved
a(n) = gcd(n-1, A336466(n)); Odd part of A340081(n).
+20
4
1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 1, 1, 1, 1, 9, 1, 1, 1, 11, 1, 1, 1, 1, 3, 7, 1, 15, 1, 1, 1, 1, 1, 9, 1, 1, 1, 5, 1, 21, 1, 1, 1, 23, 1, 3, 1, 1, 3, 13, 1, 1, 1, 1, 1, 29, 1, 15, 1, 1, 1, 1, 5, 33, 1, 1, 3, 35, 1, 9, 1, 1, 3, 1, 1, 39, 1, 1, 1, 41, 1, 1, 1, 1, 1, 11, 1, 9, 1, 1, 1, 1, 1, 3, 1, 1, 1, 25, 1, 51, 1, 1
OFFSET
1,7
FORMULA
a(n) = gcd(n-1, A336466(n)).
a(n) = A000265(A340081(n)) = A336466(n) / A340085(n).
For n >= 2, a(n) = A000265(n-1) / A340086(n).
For n >= 1, a(A000040(n)) = A057023(n).
For n >= 0, a(A019565(2*n)) = A339899(n).
MATHEMATICA
Array[GCD[#1 - 1, #2] & @@ {#, Times @@ Map[If[# <= 2, 1, (# - 1)/2^IntegerExponent[# - 1, 2]] &, Flatten[ConstantArray[#1, #2] & @@@ FactorInteger[#]]]} &, 105] (* Michael De Vlieger, Dec 29 2020 *)
PROG
(PARI)
A000265(n) = (n>>valuation(n, 2));
A336466(n) = { my(f=factor(n)); prod(k=1, #f~, if(2==f[k, 1], 1, (A000265(f[k, 1]-1))^f[k, 2])); };
A340084(n) = { my(u=A336466(n)); gcd(n-1, u); };
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 29 2020
STATUS
approved
a(1) = 0, for n > 1, a(n) = A000265(n-1) / gcd(n-1, A336466(n)).
+20
4
0, 1, 1, 3, 1, 5, 1, 7, 1, 9, 1, 11, 1, 13, 7, 15, 1, 17, 1, 19, 5, 21, 1, 23, 3, 25, 13, 9, 1, 29, 1, 31, 1, 33, 17, 35, 1, 37, 19, 39, 1, 41, 1, 43, 11, 45, 1, 47, 1, 49, 25, 17, 1, 53, 27, 55, 7, 57, 1, 59, 1, 61, 31, 63, 1, 13, 1, 67, 17, 23, 1, 71, 1, 73, 37, 25, 19, 77, 1, 79, 5, 81, 1, 83, 21, 85, 43, 87, 1, 89
OFFSET
1,4
COMMENTS
From the second term onward, the odd part of A340083.
FORMULA
a(1) = 0; for n > 1, a(n) = A000265(n-1) / A340084(n) = A000265(A340083(n)).
PROG
(PARI)
A000265(n) = (n>>valuation(n, 2));
A336466(n) = { my(f=factor(n)); prod(k=1, #f~, if(2==f[k, 1], 1, (A000265(f[k, 1]-1))^f[k, 2])); };
A340086(n) = if(1==n, 0, my(u=A336466(n)); A000265(n-1)/gcd(n-1, u));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 29 2020
STATUS
approved
a(n) = A336466(phi(n)), where A336466 is fully multiplicative with a(p) = A000265(p-1) for prime p, with A000265(k) giving the odd part of k.
+20
3
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 5, 11, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 3, 7, 1, 1, 1, 1, 1, 1, 1, 5, 1, 5, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 3, 3, 1, 5, 1, 1, 5, 1, 11, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,23
FORMULA
a(n) = A336466(A000010(n)).
Multiplicative with a(p^e) = A336466(p-1) * A336466(p)^(e-1).
PROG
(PARI)
A000265(n) = (n>>valuation(n, 2));
A336468(n) = { my(f=factor(eulerphi(n))); prod(k=1, #f~, A000265(f[k, 1]-1)^f[k, 2]); };
\\ Alternatively, as follows, requiring also code from A336466:
A336468(n) = { my(f=factor(n)); prod(k=1, #f~, A336466(f[k, 1]-1) * A336466(f[k, 1])^(f[k, 2]-1)); };
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Jul 22 2020
STATUS
approved
a(n) = A336466(A122111(n)).
+20
3
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 5, 9, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1
OFFSET
1,16
FORMULA
a(1) = 1, for n > 1, a(n) = A000265(A105560(n)-1) * a(A064989(n)).
a(n) = A336466(A122111(n)).
PROG
(PARI)
A000265(n) = (n>>valuation(n, 2));
A122111(n) = if(1==n, n, my(f=factor(n), es=Vecrev(f[, 2]), is=concat(apply(primepi, Vecrev(f[, 1])), [0]), pri=0, m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m));
A336466(n) = { my(f=factor(n)); prod(k=1, #f~, if(2==f[k, 1], 1, (A000265(f[k, 1]-1))^f[k, 2])); };
(PARI)
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A105560(n) = if(1==n, n, prime(bigomega(n)));
A339876(n) = if(1==n, n, A000265(A105560(n)-1) * A339876(A064989(n)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 25 2020
STATUS
approved
a(n) = A336466(A156552(n)).
+20
3
1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 3, 1, 9, 1, 5, 1, 11, 1, 3, 3, 3, 1, 3, 1, 15, 1, 21, 1, 1, 1, 1, 5, 3, 1, 9, 1, 33, 5, 9, 1, 23, 1, 1, 3, 65, 1, 7, 1, 35, 21, 5, 1, 21, 1, 341, 9, 3, 1, 11, 1, 27, 1, 5, 1, 5, 1, 15, 3, 51, 1, 27, 1, 39, 1, 1365, 1, 1, 5, 49, 9, 1, 1, 1, 1, 117, 5, 825, 3, 9, 1, 9, 3, 1, 1, 7, 1
OFFSET
2,7
FORMULA
a(n) = A336466(A156552(n)) = A336466(A322993(n)).
a(p) = 1 for all primes p.
a(A003961(n)) = a(n).
PROG
(PARI)
A000265(n) = (n>>valuation(n, 2));
A336466(n) = { my(f=factor(n)); prod(k=1, #f~, if(2==f[k, 1], 1, (A000265(f[k, 1]-1))^f[k, 2])); };
A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res};
(PARI)
\\ Version using the factorization file available at https://oeis.org/A156552/a156552.txt
v156552sigs = readvec("a156552.txt");
A000265(n) = (n>>valuation(n, 2));
A342666(n) = if(isprime(n), 1, my(prsig=v156552sigs[n], ps=prsig[1], es=prsig[2]); prod(i=1, #ps, A000265(ps[i]-1)^es[i])); \\ Antti Karttunen, Jan 29 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 18 2021
STATUS
approved

Search completed in 0.024 seconds