Displaying 1-10 of 29 results found.
Lexicographically earliest infinite sequence such that a(i) = a(j) => A336466(i) = A336466(j) and A336158(i) = A336158(j), for all i, j >= 1.
+20
12
1, 1, 2, 1, 2, 2, 3, 1, 4, 2, 5, 2, 3, 3, 6, 1, 2, 4, 7, 2, 8, 5, 9, 2, 4, 3, 10, 3, 11, 6, 12, 1, 13, 2, 8, 4, 7, 7, 8, 2, 5, 8, 14, 5, 15, 9, 16, 2, 17, 4, 6, 3, 18, 10, 13, 3, 19, 11, 20, 6, 12, 12, 21, 1, 8, 13, 22, 2, 23, 8, 24, 4, 7, 7, 15, 7, 25, 8, 26, 2, 27, 5, 28, 8, 6, 14, 29, 5, 9, 15, 19, 9, 25, 16, 19, 2, 3, 17, 30, 4, 31, 6, 32, 3, 33
COMMENTS
Restricted growth sequence transform of the ordered pair [ A336466(n), A336158(n)].
For all i, j:
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A336466(n) = { my(f=factor(n)); prod(k=1, #f~, if(2==f[k, 1], 1, ( A000265(f[k, 1]-1))^f[k, 2])); };
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
v336470 = rgs_transform(vector(up_to, n, Aux336470(n)));
Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [ A278222(n), A336158(n), A336466(n)], for all i, j >= 1.
+20
6
1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 3, 5, 9, 3, 10, 6, 11, 2, 12, 7, 13, 4, 14, 8, 15, 1, 16, 3, 17, 5, 18, 9, 19, 3, 20, 10, 21, 6, 22, 11, 23, 2, 24, 12, 25, 7, 26, 13, 27, 4, 28, 14, 29, 8, 30, 15, 31, 1, 32, 16, 33, 3, 34, 17, 35, 5, 18, 18, 22, 9, 36, 19, 37, 3, 38, 20, 39, 10, 40, 21, 41, 6, 42, 22, 43, 11, 44, 23, 45, 2, 7, 24, 46, 12, 47, 25, 48, 7, 49
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
A336466(n) = { my(f=factor(n)); prod(k=1, #f~, if(2==f[k, 1], 1, ( A000265(f[k, 1]-1))^f[k, 2])); };
v336460 = rgs_transform(vector(up_to, n, Aux336460(n)));
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 3, 1, 1, 9, 3, 1, 1, 3, 1, 5, 1, 11, 1, 1, 3, 1, 1, 1, 1, 1, 5, 3, 9, 7, 1, 1, 1, 15, 3, 1, 3, 1, 1, 1, 11, 1, 1, 1, 1, 9, 1, 3, 15, 3, 1, 1, 1, 5, 1, 3, 1, 21, 7, 5, 1, 1, 1, 11, 15, 23, 9, 1, 1, 9, 5, 1, 1, 1, 1, 3, 3
MATHEMATICA
Array[#2/GCD[#1 - 1, #2] & @@ {#, Times @@ Map[If[# <= 2, 1, (# - 1)/2^IntegerExponent[# - 1, 2]] &, Flatten[ConstantArray[#1, #2] & @@@ FactorInteger[#]]]} &, 105] (* Michael De Vlieger, Dec 29 2020 *)
PROG
(PARI)
A336466(n) = { my(f=factor(n)); prod(k=1, #f~, if(2==f[k, 1], 1, ( A000265(f[k, 1]-1))^f[k, 2])); };
Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(i) = A278222(j) and A336466(i) = A336466(j), for all i, j >= 1.
+20
5
1, 1, 2, 1, 3, 2, 4, 1, 3, 3, 5, 2, 6, 4, 7, 1, 3, 3, 8, 3, 9, 5, 10, 2, 11, 6, 12, 4, 13, 7, 14, 1, 15, 3, 6, 3, 16, 8, 17, 3, 18, 9, 19, 5, 20, 10, 21, 2, 8, 11, 12, 6, 22, 12, 23, 4, 24, 13, 25, 7, 26, 14, 27, 1, 28, 15, 29, 3, 30, 6, 31, 3, 16, 16, 20, 8, 32, 17, 33, 3, 34, 18, 35, 9, 36, 19, 37, 5, 38, 20, 39, 10, 40, 21, 41, 2, 6, 8, 42, 11, 43, 12, 44, 6, 45
COMMENTS
Restricted growth sequence transform of the ordered pair [ A278222(n), A336466(n)].
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
A336466(n) = { my(f=factor(n)); prod(k=1, #f~, if(2==f[k, 1], 1, ( A000265(f[k, 1]-1))^f[k, 2])); };
v336472 = rgs_transform(vector(up_to, n, Aux336472(n)));
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 3, 1, 3, 3, 5, 1, 1, 1, 1, 1, 1, 1, 27, 1, 1, 1, 9, 1, 9, 9, 25, 1, 1, 1, 3, 1, 3, 3, 15, 1, 3, 3, 5, 3, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 81, 1, 1, 1, 27, 1, 27, 27, 125, 1, 1, 1, 9, 1, 9, 9, 75, 1, 9, 9, 25, 9, 25, 25, 9, 1, 1, 1, 3, 1
FORMULA
For all n >= 1, a(n) = a(2*n) = a( A000265(n)).
PROG
(PARI)
A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
A336466(n) = { my(f=factor(n)); prod(k=1, #f~, A000265(f[k, 1]-1)^f[k, 2]); };
1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 1, 1, 1, 1, 9, 1, 1, 1, 11, 1, 1, 1, 1, 3, 7, 1, 15, 1, 1, 1, 1, 1, 9, 1, 1, 1, 5, 1, 21, 1, 1, 1, 23, 1, 3, 1, 1, 3, 13, 1, 1, 1, 1, 1, 29, 1, 15, 1, 1, 1, 1, 5, 33, 1, 1, 3, 35, 1, 9, 1, 1, 3, 1, 1, 39, 1, 1, 1, 41, 1, 1, 1, 1, 1, 11, 1, 9, 1, 1, 1, 1, 1, 3, 1, 1, 1, 25, 1, 51, 1, 1
MATHEMATICA
Array[GCD[#1 - 1, #2] & @@ {#, Times @@ Map[If[# <= 2, 1, (# - 1)/2^IntegerExponent[# - 1, 2]] &, Flatten[ConstantArray[#1, #2] & @@@ FactorInteger[#]]]} &, 105] (* Michael De Vlieger, Dec 29 2020 *)
PROG
(PARI)
A336466(n) = { my(f=factor(n)); prod(k=1, #f~, if(2==f[k, 1], 1, ( A000265(f[k, 1]-1))^f[k, 2])); };
0, 1, 1, 3, 1, 5, 1, 7, 1, 9, 1, 11, 1, 13, 7, 15, 1, 17, 1, 19, 5, 21, 1, 23, 3, 25, 13, 9, 1, 29, 1, 31, 1, 33, 17, 35, 1, 37, 19, 39, 1, 41, 1, 43, 11, 45, 1, 47, 1, 49, 25, 17, 1, 53, 27, 55, 7, 57, 1, 59, 1, 61, 31, 63, 1, 13, 1, 67, 17, 23, 1, 71, 1, 73, 37, 25, 19, 77, 1, 79, 5, 81, 1, 83, 21, 85, 43, 87, 1, 89
COMMENTS
From the second term onward, the odd part of A340083.
PROG
(PARI)
A336466(n) = { my(f=factor(n)); prod(k=1, #f~, if(2==f[k, 1], 1, ( A000265(f[k, 1]-1))^f[k, 2])); };
a(n) = A336466(phi(n)), where A336466 is fully multiplicative with a(p) = A000265(p-1) for prime p, with A000265(k) giving the odd part of k.
+20
3
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 5, 11, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 3, 7, 1, 1, 1, 1, 1, 1, 1, 5, 1, 5, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 3, 3, 1, 5, 1, 1, 5, 1, 11, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1
PROG
(PARI)
A336468(n) = { my(f=factor(eulerphi(n))); prod(k=1, #f~, A000265(f[k, 1]-1)^f[k, 2]); };
\\ Alternatively, as follows, requiring also code from A336466:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 5, 9, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1
PROG
(PARI)
A122111(n) = if(1==n, n, my(f=factor(n), es=Vecrev(f[, 2]), is=concat(apply(primepi, Vecrev(f[, 1])), [0]), pri=0, m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m));
A336466(n) = { my(f=factor(n)); prod(k=1, #f~, if(2==f[k, 1], 1, ( A000265(f[k, 1]-1))^f[k, 2])); };
(PARI)
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A105560(n) = if(1==n, n, prime(bigomega(n)));
1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 3, 1, 9, 1, 5, 1, 11, 1, 3, 3, 3, 1, 3, 1, 15, 1, 21, 1, 1, 1, 1, 5, 3, 1, 9, 1, 33, 5, 9, 1, 23, 1, 1, 3, 65, 1, 7, 1, 35, 21, 5, 1, 21, 1, 341, 9, 3, 1, 11, 1, 27, 1, 5, 1, 5, 1, 15, 3, 51, 1, 27, 1, 39, 1, 1365, 1, 1, 5, 49, 9, 1, 1, 1, 1, 117, 5, 825, 3, 9, 1, 9, 3, 1, 1, 7, 1
FORMULA
a(p) = 1 for all primes p.
PROG
(PARI)
A336466(n) = { my(f=factor(n)); prod(k=1, #f~, if(2==f[k, 1], 1, ( A000265(f[k, 1]-1))^f[k, 2])); };
A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res};
(PARI)
\\ Version using the factorization file available at https://oeis.org/ A156552/a156552.txt
v156552sigs = readvec("a156552.txt");
A342666(n) = if(isprime(n), 1, my(prsig=v156552sigs[n], ps=prsig[1], es=prsig[2]); prod(i=1, #ps, A000265(ps[i]-1)^es[i])); \\ Antti Karttunen, Jan 29 2022
Search completed in 0.024 seconds
|