Displaying 1-10 of 14 results found.
Number of non-normal semi-magic squares with sum of entries equal to n.
+10
25
1, 1, 3, 7, 28, 121, 746, 5041, 40608, 362936, 3635017, 39916801, 479206146, 6227020801, 87187426839, 1307674521272, 20923334906117, 355687428096001, 6402415241245577, 121645100408832001, 2432905938909013343, 51090942176372298027, 1124001180562929946213
COMMENTS
A non-normal semi-magic square is a nonnegative integer matrix with row sums and column sums all equal to d, for some d|n.
Squares must be of size k X k where k is a divisor of n. This implies that a(p) = p! + 1 for p prime since the only allowable squares are of sizes 1 X 1 and p X p. The 1 X 1 square is [p], the p X p squares are necessarily permutation matrices and there are p! permutation matrices of size p X p. Also, a(n) >= n! + 1 for n > 1. - Chai Wah Wu, Jan 13 2019
FORMULA
a(p) = p! + 1 for p prime and a(n) >= n! + 1 for n > 1 (see comment above). - Chai Wah Wu, Jan 13 2019
EXAMPLE
The a(3) = 7 semi-magic squares:
[3]
.
[1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
[0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
[0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
MATHEMATICA
prs2mat[prs_]:=Table[Count[prs, {i, j}], {i, Union[First/@prs]}, {j, Union[Last/@prs]}];
multsubs[set_, k_]:=If[k==0, {{}}, Join@@Table[Prepend[#, set[[i]]]&/@multsubs[Drop[set, i-1], k-1], {i, Length[set]}]];
Table[Length[Select[multsubs[Tuples[Range[n], 2], n], And[Union[First/@#]==Range[Max@@First/@#]==Union[Last/@#], SameQ@@Total/@prs2mat[#], SameQ@@Total/@Transpose[prs2mat[#]]]&]], {n, 5}]
EXTENSIONS
a(6) corrected and a(8)-a(15) added by Chai Wah Wu, Jan 14 2019
Number of uniform regular hypergraphs spanning n vertices.
+10
18
1, 1, 2, 3, 10, 29, 3780, 5012107
COMMENTS
We define a hypergraph to be any finite set of finite nonempty sets. A hypergraph is uniform if all edges have the same size, and regular if all vertices have the same degree. The span of a hypergraph is the union of its edges.
Also the number of 0-1 matrices with n columns, all distinct rows, no zero columns, equal row-sums, and equal column-sums, up to a permutation of the rows.
EXAMPLE
The a(4) = 10 edge-sets:
{{1,2,3,4}}
{{1,2},{3,4}}
{{1,3},{2,4}}
{{1,4},{2,3}}
{{1},{2},{3},{4}}
{{1,2},{1,3},{2,4},{3,4}}
{{1,2},{1,4},{2,3},{3,4}}
{{1,3},{1,4},{2,3},{2,4}}
{{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
{{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
Inequivalent representatives of the a(4) = 10 matrices:
[1 1 1 1]
.
[1 1 0 0] [1 0 1 0] [1 0 0 1]
[0 0 1 1] [0 1 0 1] [0 1 1 0]
.
[1 0 0 0] [1 1 0 0] [1 1 0 0] [1 0 1 0] [1 1 1 0]
[0 1 0 0] [1 0 1 0] [1 0 0 1] [1 0 0 1] [1 1 0 1]
[0 0 1 0] [0 1 0 1] [0 1 1 0] [0 1 1 0] [1 0 1 1]
[0 0 0 1] [0 0 1 1] [0 0 1 1] [0 1 0 1] [0 1 1 1]
.
[1 1 0 0]
[1 0 1 0]
[1 0 0 1]
[0 1 1 0]
[0 1 0 1]
[0 0 1 1]
MATHEMATICA
Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s, {s, Subsets[Range[n], {m}]}], Sequence@@Table[{x[i], 0, k}, {i, n}]], {m, 0, n}, {k, 1, Binomial[n, m]}], {n, 5}]
CROSSREFS
Uniform hypergraphs are counted by A306021. Unlabeled uniform regular multiset partitions are counted by A319056. Regular graphs are A295193. Uniform clutters are A299353.
Number of coupled non-normal semi-magic rectangles with sum of entries equal to n.
+10
14
1, 1, 5, 9, 44, 123, 986, 5043, 45832, 366300, 3862429, 39916803, 495023832, 6227020803, 88549595295, 1308012377572, 21086922542349, 355687428096003, 6427700493998229, 121645100408832003, 2437658338007783347, 51091307195905020227, 1125098837523651728389, 25852016738884976640003, 620752163206546966698620, 15511210044577707492319496
COMMENTS
A coupled non-normal semi-magic rectangle is a nonnegative integer matrix with equal row sums and equal column sums. The common row sum may be different from the common column sum.
Rectangles must be of size k X m where k and m are divisors of n. This implies that a(p) = p! + 3 for p prime since the only allowable rectangles are of sizes 1 X 1, 1 X p, p X 1 and p X p. The 1 X 1 square is [p], the 1 X p and p X 1 rectangles are [1,...,1] and its transpose and the p X p squares are necessarily permutation matrices and there are p! permutation matrices of size p X p. Also, a(n) >= n! + 3 for n > 1. - Chai Wah Wu, Jan 15 2019
FORMULA
a(p) = p! + 3 for p prime. a(n) >= n! + 3 for n > 1. - Chai Wah Wu, Jan 15 2019
EXAMPLE
The a(3) = 9 coupled semi-magic rectangles:
[3] [1 1 1]
.
[1] [1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
[1] [0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
[1] [0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
MATHEMATICA
prs2mat[prs_]:=Table[Count[prs, {i, j}], {i, Union[First/@prs]}, {j, Union[Last/@prs]}];
multsubs[set_, k_]:=If[k==0, {{}}, Join@@Table[Prepend[#, set[[i]]]&/@multsubs[Drop[set, i-1], k-1], {i, Length[set]}]];
Table[Length[Select[multsubs[Tuples[Range[n], 2], n], And[Union[First/@#]==Range[Max@@First/@#], Union[Last/@#]==Range[Max@@Last/@#], SameQ@@Total/@prs2mat[#], SameQ@@Total/@Transpose[prs2mat[#]]]&]], {n, 5}]
Number of non-isomorphic non-normal semi-magic square multiset partitions of weight n.
+10
14
1, 1, 2, 2, 4, 2, 7, 2, 10, 7, 12, 2, 38, 2, 21, 46, 72, 2, 162, 2, 420, 415, 64, 2, 4987, 1858, 110, 9336, 45456, 2, 136018, 2, 1014658, 406578, 308, 3996977, 34937078, 2, 502, 28010167, 1530292965, 2, 508164038, 2, 54902992348, 51712929897, 1269, 2, 3217847072904, 8597641914, 9168720349613
COMMENTS
A non-normal semi-magic square multiset partition of weight n is a multiset partition of weight n whose part sizes and vertex degrees are all equal to d, for some d|n.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
Also the number of nonnegative integer square matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, with row sums and column sums all equal to d, for some d|n.
FORMULA
a(p) = 2 for p prime corresponding to the 1 X 1 square [p] and the permutation matrices of size p X p with partition (1...10...0). - Chai Wah Wu, Jan 16 2019
EXAMPLE
Non-isomorphic representatives of the a(2) = 2 through a(6) = 7 multiset partitions:
{{11}} {{111}} {{1111}} {{11111}} {{111111}}
{{1}{2}} {{1}{2}{3}} {{11}{22}} {{1}{2}{3}{4}{5}} {{111}{222}}
{{12}{12}} {{112}{122}}
{{1}{2}{3}{4}} {{11}{22}{33}}
{{11}{23}{23}}
{{12}{13}{23}}
{{1}{2}{3}{4}{5}{6}}
Inequivalent representatives of the a(6) = 7 matrices:
[6]
.
[3 0] [2 1]
[0 3] [1 2]
.
[2 0 0] [2 0 0] [1 1 0]
[0 2 0] [0 1 1] [1 0 1]
[0 0 2] [0 1 1] [0 1 1]
.
[1 0 0 0 0 0]
[0 1 0 0 0 0]
[0 0 1 0 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 0]
[0 0 0 0 0 1]
Inequivalent representatives of the a(9) = 7 matrices:
[9]
.
[3 0 0] [3 0 0] [2 1 0] [2 1 0] [1 1 1]
[0 3 0] [0 2 1] [1 1 1] [1 0 2] [1 1 1]
[0 0 3] [0 1 2] [0 1 2] [0 2 1] [1 1 1]
.
[1 0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0 0]
[0 0 0 1 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 1]
Number of covering antichains of nonempty, non-singleton subsets of {1..n}, all having the same sum.
+10
8
1, 0, 1, 1, 4, 13, 91, 1318, 73581, 51913025
COMMENTS
An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.
EXAMPLE
The a(2) = 1 through a(5) = 13 antichains:
{{1,2}} {{1,2,3}} {{1,2,3,4}} {{1,2,3,4,5}}
{{1,4},{2,3}} {{1,2,5},{1,3,4}}
{{2,4},{1,2,3}} {{1,3,5},{2,3,4}}
{{3,4},{1,2,4}} {{1,4,5},{2,3,5}}
{{1,4,5},{1,2,3,4}}
{{2,3,5},{1,2,3,4}}
{{2,4,5},{1,2,3,5}}
{{3,4,5},{1,2,4,5}}
{{1,5},{2,4},{1,2,3}}
{{2,5},{3,4},{1,2,4}}
{{3,5},{1,2,5},{1,3,4}}
{{4,5},{1,3,5},{2,3,4}}
{{1,4,5},{2,3,5},{1,2,3,4}}
MATHEMATICA
stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]];
cleq[n_]:=Select[stableSets[Subsets[Range[n], {2, n}], SubsetQ[#1, #2]||Total[#1]!=Total[#2]&], Union@@#==Range[n]&];
Table[Length[cleq[n]], {n, 0, 5}]
CROSSREFS
Cf. A000372, A006126, A035470, A307249, A321455, A321717, A321718, A326360, A326518, A326534, A326566.
Number of non-normal (0,1) semi-magic squares with sum of entries equal to n.
+10
7
1, 1, 2, 6, 25, 120, 726, 5040, 40410, 362881, 3630840, 39916800, 479069574, 6227020800, 87181402140, 1307674370040, 20922977418841, 355687428096000, 6402388104196400, 121645100408832000, 2432903379962038320, 51090942171778378800, 1124000886592995642000, 25852016738884976640000
COMMENTS
A non-normal semi-magic square is a nonnegative integer matrix with row sums and column sums all equal to d, for some d|n.
FORMULA
a(p) = p! for p prime as the squares are all permutation matrices of order p and a(n) >= n! for n > 1 (see comments in A321717 and A321719). - Chai Wah Wu, Jan 13 2019
MATHEMATICA
prs2mat[prs_]:=Table[Count[prs, {i, j}], {i, Union[First/@prs]}, {j, Union[Last/@prs]}];
Table[Length[Select[Subsets[Tuples[Range[n], 2], {n}], And[Union[First/@#]==Union[Last/@#]==Range[Max@@First/@#], SameQ@@Total/@prs2mat[#], SameQ@@Total/@Transpose[prs2mat[#]]]&]], {n, 5}]
CROSSREFS
Cf. A006052, A007016, A057151, A068313, A008300, A101370, A104602, A120732, A271103, A319056, A319616.
Number of covering antichains of subsets of {1..n} with equal edge-sums.
+10
7
2, 1, 1, 2, 4, 14, 92, 1320, 73584, 51913039
COMMENTS
An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.
EXAMPLE
The a(1) = 1 through a(5) = 14 antichains:
{{1}} {{1,2}} {{1,2,3}} {{1,2,3,4}} {{1,2,3,4,5}}
{{3},{1,2}} {{1,4},{2,3}} {{1,2,5},{1,3,4}}
{{2,4},{1,2,3}} {{1,3,5},{2,3,4}}
{{3,4},{1,2,4}} {{1,4,5},{2,3,5}}
{{5},{1,4},{2,3}}
{{1,4,5},{1,2,3,4}}
{{2,3,5},{1,2,3,4}}
{{2,4,5},{1,2,3,5}}
{{3,4,5},{1,2,4,5}}
{{1,5},{2,4},{1,2,3}}
{{2,5},{3,4},{1,2,4}}
{{3,5},{1,2,5},{1,3,4}}
{{4,5},{1,3,5},{2,3,4}}
{{1,4,5},{2,3,5},{1,2,3,4}}
MATHEMATICA
stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]];
cleq[n_]:=Select[stableSets[Subsets[Range[n]], SubsetQ[#1, #2]||Total[#1]!=Total[#2]&], Union@@#==Range[n]&];
Table[Length[cleq[n]], {n, 0, 5}]
Number of non-normal magic squares whose entries are all 0 or 1 and sum to n.
+10
6
1, 1, 0, 0, 9, 20, 96, 656, 5584, 48913, 494264, 5383552, 65103875, 840566080, 11834159652, 176621049784, 2838040416201, 48060623405312
COMMENTS
A non-normal magic square is a square matrix with row sums, column sums, and both diagonals all equal to d, for some d|n.
EXAMPLE
The a(4) = 9 magic squares:
[1 1]
[1 1]
.
[1 0 0 0][1 0 0 0][0 1 0 0][0 1 0 0][0 0 1 0][0 0 1 0][0 0 0 1][0 0 0 1]
[0 0 1 0][0 0 0 1][0 0 1 0][0 0 0 1][1 0 0 0][0 1 0 0][1 0 0 0][0 1 0 0]
[0 0 0 1][0 1 0 0][1 0 0 0][0 0 1 0][0 1 0 0][0 0 0 1][0 0 1 0][1 0 0 0]
[0 1 0 0][0 0 1 0][0 0 0 1][1 0 0 0][0 0 0 1][1 0 0 0][0 1 0 0][0 0 1 0]
MATHEMATICA
prs2mat[prs_]:=Table[Count[prs, {i, j}], {i, Union[First/@prs]}, {j, Union[Last/@prs]}];
multsubs[set_, k_]:=If[k==0, {{}}, Join@@Table[Prepend[#, set[[i]]]&/@multsubs[Drop[set, i-1], k-1], {i, Length[set]}]];
Table[Length[Select[Subsets[Tuples[Range[n], 2], {n}], And[Union[First/@#]==Range[Max@@First/@#]==Union[Last/@#], SameQ@@Join[{Tr[prs2mat[#]], Tr[Reverse[prs2mat[#]]]}, Total/@prs2mat[#], Total/@Transpose[prs2mat[#]]]]&]], {n, 5}]
Number of antichains of subsets of {1..n} with equal edge-sums.
+10
6
2, 3, 5, 10, 22, 61, 247, 2096, 81896, 52260575
COMMENTS
An antichain is a finite set of finite sets, none of which is a subset of any other. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.
EXAMPLE
The a(0) = 2 through a(4) = 22 antichains:
{} {} {} {} {}
{{}} {{}} {{}} {{}} {{}}
{{1}} {{1}} {{1}} {{1}}
{{2}} {{2}} {{2}}
{{1,2}} {{3}} {{3}}
{{1,2}} {{4}}
{{1,3}} {{1,2}}
{{2,3}} {{1,3}}
{{1,2,3}} {{1,4}}
{{3},{1,2}} {{2,3}}
{{2,4}}
{{3,4}}
{{1,2,3}}
{{1,2,4}}
{{1,3,4}}
{{2,3,4}}
{{1,2,3,4}}
{{3},{1,2}}
{{4},{1,3}}
{{1,4},{2,3}}
{{2,4},{1,2,3}}
{{3,4},{1,2,4}}
MATHEMATICA
stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]];
cleqset[set_]:=stableSets[Subsets[set], SubsetQ[#1, #2]||Total[#1]!=Total[#2]&];
Table[Length[cleqset[Range[n]]], {n, 0, 5}]
CROSSREFS
Set partitions with equal block-sums are A035470.
Antichains with different edge-sums are A326030.
MM-numbers of multiset partitions with equal part-sums are A326534.
MM-numbers of uniform regular multiset multisystems. Numbers whose prime indices all have the same number of prime factors counted with multiplicity, and such that the product of the same prime indices is a power of a squarefree number.
+10
4
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 19, 23, 25, 27, 29, 31, 32, 33, 41, 43, 47, 49, 51, 53, 55, 59, 64, 67, 73, 79, 81, 83, 85, 93, 97, 101, 103, 109, 113, 121, 123, 125, 127, 128, 131, 137, 139, 149, 151, 155, 157, 161, 163, 165, 167, 169, 177, 179
COMMENTS
A multiset multisystem is a finite multiset of finite multisets. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
A multiset multisystem is uniform if all parts have the same size, and regular if all vertices appear the same number of times. For example, {{1,1},{2,3},{2,3}} is uniform and regular, so its MM-number 15463 belongs to the sequence.
EXAMPLE
The sequence of all uniform regular multiset multisystems, together with their MM-numbers, begins:
1: {} 33: {{1},{3}} 109: {{10}}
2: {{}} 41: {{6}} 113: {{1,2,3}}
3: {{1}} 43: {{1,4}} 121: {{3},{3}}
4: {{},{}} 47: {{2,3}} 123: {{1},{6}}
5: {{2}} 49: {{1,1},{1,1}} 125: {{2},{2},{2}}
7: {{1,1}} 51: {{1},{4}} 127: {{11}}
8: {{},{},{}} 53: {{1,1,1,1}} 128: {{},{},{},{},{},{}}
9: {{1},{1}} 55: {{2},{3}} 131: {{1,1,1,1,1}}
11: {{3}} 59: {{7}} 137: {{2,5}}
13: {{1,2}} 64: {{},{},{},{},{},{}} 139: {{1,7}}
15: {{1},{2}} 67: {{8}} 149: {{3,4}}
16: {{},{},{},{}} 73: {{2,4}} 151: {{1,1,2,2}}
17: {{4}} 79: {{1,5}} 155: {{2},{5}}
19: {{1,1,1}} 81: {{1},{1},{1},{1}} 157: {{12}}
23: {{2,2}} 83: {{9}} 161: {{1,1},{2,2}}
25: {{2},{2}} 85: {{2},{4}} 163: {{1,8}}
27: {{1},{1},{1}} 93: {{1},{5}} 165: {{1},{2},{3}}
29: {{1,3}} 97: {{3,3}} 167: {{2,6}}
31: {{5}} 101: {{1,6}} 169: {{1,2},{1,2}}
32: {{},{},{},{},{}} 103: {{2,2,2}} 177: {{1},{7}}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], And[SameQ@@PrimeOmega/@primeMS[#], SameQ@@Last/@FactorInteger[Times@@primeMS[#]]]&]
CROSSREFS
Cf. A005176, A007016, A112798, A271103, A283877, A299353, A302242, A306017, A319056, A319189, A320324, A321699, A321717, A322554, A322703, A322833.
Search completed in 0.009 seconds
|