[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a324426 -id:a324426
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = Product_{i=1..n, j=1..n} (i^2 + j^2).
+10
34
1, 2, 400, 121680000, 281324160000000000, 15539794609114833408000000000000, 49933566483104048708063697937367040000000000000000, 19323883089768863178599626514889213871887405416448000000000000000000000000
OFFSET
0,2
COMMENTS
Next term is too long to be included.
FORMULA
a(n) ~ 2^(n*(n+1) - 3/4) * exp(Pi*n*(n+1)/2 - 3*n^2 + Pi/12) * n^(2*n^2 - 1/2) / (Pi^(1/4) * Gamma(3/4)).
a(n) = 2*n^2*a(n-1)*Product_{i=1..n-1} (n^2 + i^2)^2. - Chai Wah Wu, Feb 26 2019
For n>0, a(n)/a(n-1) = A272244(n)^2 / (2*n^6). - Vaclav Kotesovec, Dec 02 2023
MAPLE
a:= n-> mul(mul(i^2+j^2, i=1..n), j=1..n):
seq(a(n), n=0..7); # Alois P. Heinz, Jun 24 2023
MATHEMATICA
Table[Product[i^2+j^2, {i, 1, n}, {j, 1, n}], {n, 1, 10}]
PROG
(PARI) a(n) = prod(i=1, n, prod(j=1, n, i^2+j^2)); \\ Michel Marcus, Feb 27 2019
(Python)
from math import prod, factorial
def A324403(n): return (prod(i**2+j**2 for i in range(1, n) for j in range(i+1, n+1))*factorial(n))**2<<n # Chai Wah Wu, Nov 22 2023
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Feb 26 2019
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Jun 24 2023
STATUS
approved
a(n) = Product_{i=1..n, j=1..n} (i^4 + j^4).
+10
15
1, 2, 18496, 189567553208832, 53863903330477722171391434817536, 4194051697335929481600368256016484482740174637152337920000, 530545265060440849231458462212366841894726534233233018777709463062563850450708386692464640000
OFFSET
0,2
FORMULA
a(n) ~ c * 2^(n*(n+1)) * exp(Pi*n*(n+1)/sqrt(2) - 6*n^2) * (1 + sqrt(2))^(sqrt(2)*n*(n+1)) * n^(4*n^2 - 1), where c = A306620 = 0.23451584451404279281807143317500518660696293944961...
For n>0, a(n)/a(n-1) = A272247(n)^2 / (2*n^12). - Vaclav Kotesovec, Dec 01 2023
MAPLE
a:= n-> mul(mul(i^4+j^4, i=1..n), j=1..n):
seq(a(n), n=0..7); # Alois P. Heinz, Jun 24 2023
MATHEMATICA
Table[Product[i^4 + j^4, {i, 1, n}, {j, 1, n}], {n, 1, 6}]
PROG
(Python)
from math import prod, factorial
def A324437(n): return (prod(i**4+j**4 for i in range(1, n) for j in range(i+1, n+1))*factorial(n)**2)**2<<n # Chai Wah Wu, Nov 26 2023
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Feb 28 2019
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Jun 24 2023
STATUS
approved
a(n) = Product_{i=1..n, j=1..n} (i^2 - i*j + j^2).
+10
14
1, 36, 777924, 51190934086656, 32435802373365731229926400, 483207398728525904876601066508152707481600, 350969035472356907726779584093506665415605824531908346799718400
OFFSET
1,2
FORMULA
a(n) = A324426(n) / A079478(n).
a(n) ~ 3^(1/6) * Gamma(1/3)^2 * n^(2*n^2 - 1/3) / (2^(5/3) * Pi^(5/3) * exp(3*n^2 - (n^2 + n + 1/6)*Pi/sqrt(3))).
MATHEMATICA
Table[Product[Product[(i^2 - i*j + j^2), {i, 1, n}], {j, 1, n}], {n, 1, 10}]
PROG
(Python)
from math import prod, factorial
def A367543(n): return (prod(i*(i-j)+j**2 for i in range(1, n) for j in range(i+1, n+1))*factorial(n))**2 # Chai Wah Wu, Nov 22 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Nov 22 2023
STATUS
approved
a(n) = Product_{i=1..n, j=1..n} (i^5 + j^5).
+10
9
1, 2, 139392, 305013568273920000, 1174837791623127613548781790822400000000, 139642003782073074626249921818187528362524804267528306032640000000000000
OFFSET
0,2
FORMULA
a(n) ~ c * 2^(2*n*(n+1)) * phi^(sqrt(5)*n*(n+1)) * exp(Pi*sqrt(phi)*n*(n+1)/5^(1/4) - 15*n^2/2) * n^(5*n^2 - 5/4), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio and c = 0.1574073828647726237455544898360432469056972905505624900871695...
a(n) = A367679(n) * A079478(n). - Vaclav Kotesovec, Nov 26 2023
For n>0, a(n)/a(n-1) = A272248(n)^2 / (2*n^15). - Vaclav Kotesovec, Dec 02 2023
MAPLE
a:= n-> mul(mul(i^5 + j^5, i=1..n), j=1..n):
seq(a(n), n=0..5); # Alois P. Heinz, Nov 26 2023
MATHEMATICA
Table[Product[i^5 + j^5, {i, 1, n}, {j, 1, n}], {n, 1, 6}]
PROG
(Python)
from math import prod, factorial
def A324438(n): return prod(i**5+j**5 for i in range(1, n) for j in range(i+1, n+1))**2*factorial(n)**5<<n # Chai Wah Wu, Nov 26 2023
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Feb 28 2019
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Nov 26 2023
STATUS
approved
a(n) = Product_{i=1..n, j=1..n} (i^8 + j^8).
+10
9
1, 2, 67634176, 1775927682136440882473213952, 22495149450984565292579847926810488282934424886723006835982336
OFFSET
0,2
COMMENTS
Next term is too long to be included.
For m > 0, Product_{j=1..n, k=1..n} (j^m + k^m) ~ c(m) * exp(n*(n+1)*s(m) - m*n*(n-2)/2) * n^(m*(n^2 - 1/4 - v)), where v = 0 if m > 1 and v = 1/6 if m = 1, s(m) = Sum_{j>=1} (-1)^(j+1)/(j*(1 + m*j)) and c(m) is a constant (dependent only on m). Equivalently, s(m) = log(2) - HurwitzLerchPhi(-1, 1, 1 + 1/m).
c(1) = A / (2^(1/12) * exp(1/12) * sqrt(Pi)).
c(2) = exp(Pi/12) * Gamma(1/4) / (2^(5/4) * Pi^(5/4)).
c(3) = A * 3^(1/6) * exp(Pi/(6*sqrt(3)) - 1/12) * Gamma(1/3)^2 / (2^(7/4) * Pi^(13/6)), where A = A074962 is the Glaisher-Kinkelin constant.
c(4) = A306620.
FORMULA
For n>0, a(n)/a(n-1) = A367833(n)^2 / (2*n^24).
a(n) ~ c * 2^(n*(n+1)) * (1 + 1/(sqrt(1 - 1/sqrt(2)) - 1/2))^(sqrt(2 + sqrt(2))*n*((n+1)/2)) * (1 + 1/(sqrt(1 + 1/sqrt(2)) - 1/2))^(sqrt(2 - sqrt(2))*n*((n+1)/2)) * (n^(8*n^2 - 2) / exp(12*n^2 - Pi*sqrt(1 + 1/sqrt(2))*n*(n+1))), where c = 0.043985703178712025347328240881106818917398444790454628282522057393529338998...
MATHEMATICA
Table[Product[i^8 + j^8, {i, 1, n}, {j, 1, n}], {n, 0, 6}]
PROG
(Python)
from math import prod, factorial
def A367834(n): return (prod(i**8+j**8 for i in range(1, n) for j in range(i+1, n+1))*factorial(n)**4)**2<<n # Chai Wah Wu, Dec 02 2023
CROSSREFS
Cf. A079478 (m=1), A324403 (m=2), A324426 (m=3), A324437 (m=4), A324438 (m=5), A324439 (m=6), A324440 (m=7).
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Dec 02 2023
STATUS
approved
a(n) = Product_{i=1..n, j=1..n} (i^6 + j^6).
+10
8
1, 2, 1081600, 528465082730906880000, 29276520893554373473343522853366005760000000000, 5719545329208791496596894540018824083491259163047733746620041978183680000000000000000
OFFSET
0,2
FORMULA
a(n) ~ c * 2^(n*(n+1)) * (2 + sqrt(3))^(sqrt(3)*n*(n+1)) * exp(Pi*n*(n+1) - 9*n^2) * n^(6*n^2 - 3/2), where c = 0.104143806044091748191387307161835081649...
a(n) = A324403(n) * A367668(n). - Vaclav Kotesovec, Dec 01 2023
For n>0, a(n)/a(n-1) = A367823^2 / (2*n^18). - Vaclav Kotesovec, Dec 02 2023
MAPLE
a:= n-> mul(mul(i^6 + j^6, i=1..n), j=1..n):
seq(a(n), n=0..5); # Alois P. Heinz, Nov 26 2023
MATHEMATICA
Table[Product[i^6 + j^6, {i, 1, n}, {j, 1, n}], {n, 1, 6}]
PROG
(Python)
from math import prod, factorial
def A324439(n): return (prod(i**6+j**6 for i in range(1, n) for j in range(i+1, n+1))*factorial(n)**3)**2<<n # Chai Wah Wu, Nov 26 2023
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Feb 28 2019
EXTENSIONS
a(n)=1 prepended by Alois P. Heinz, Nov 26 2023
STATUS
approved
a(n) = Product_{k=0..n} (n^3 + k^3).
+10
7
0, 2, 1152, 1428840, 3488808960, 15044494500000, 105235903511101440, 1119277024472896248960, 17216259547948971039129600, 368066786222106315186876633600, 10591209807103301277597696000000000, 399472472359100444604916002033020774400
OFFSET
0,2
FORMULA
a(n) ~ 2^(2*n + 1/2) * n^(3*n + 3) / exp((3 - Pi/sqrt(3))*n).
MATHEMATICA
Table[Product[n^3+k^3, {k, 0, n}], {n, 0, 12}]
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Apr 23 2016
STATUS
approved
a(n) = Product_{i=1..n, j=1..n} (i^7 + j^7).
+10
7
1, 2, 8520192, 956147263254051187507200, 790929096572487518050439299107158612099228070051840000, 266108022587896795750359251172229660295854509829286134803404773931312693787460334360985600000000000
OFFSET
0,2
COMMENTS
For m>1, Product_{j=1..n, k=1..n} (j^m + k^m) ~ c(m) * exp(n*(n+1)*s(m) - m*n*(n-2)/2) * n^(m*(n^2 - 1/4)), where s(m) = Sum_{j>=1} (-1)^(j+1)/(j*(1 + m*j)) and c(m) is a constant (dependent only on m). Equivalently, s(m) = log(2) - HurwitzLerchPhi(-1, 1, 1 + 1/m). - Vaclav Kotesovec, Dec 01 2023
FORMULA
Limit_{n->oo} (a(n)^(1/n^2))/n^7 = 2^(3/2) * (cos(3*Pi/14) / tan(Pi/7))^sin(3*Pi/14) / ((cos(Pi/14)*tan(3*Pi/14))^sin(Pi/14) * (sin(Pi/7)*tan(Pi/14))^cos(Pi/7)) * exp((Pi/sin(Pi/7) - 21)/2) = 0.0334234967249533921390751418772468470887965377...
From Vaclav Kotesovec, Dec 01 2023: (Start)
a(n) ~ c * exp(n*(n+1)*s - 7*n*(n-2)/2) * n^(7*(n^2 - 1/4)), where
s = Sum_{j>=1} (-1)^(j+1)/(j*(1 + 7*j)) = Pi/(2*sin(Pi/7)) + 3*log(2)/2 - 7 - cos(Pi/7) * log(2*sin(Pi/14)^2) - log(2*sin(3*Pi/14)^2) * sin(Pi/14) + log(cos(3*Pi/14)*cos(Pi/7) / sin(Pi/7)) * sin(3*Pi/14) = 0.10150386842315637912206687298894641634315636548242136512503... and
c = 0.068056503846689328929612652207251071282623125565150941566636264805878144...
Equivalently, s = log(2) - HurwitzLerchPhi(-1, 1, 1 + 1/7). (End)
MAPLE
a:= n-> mul(mul(i^7 + j^7, i=1..n), j=1..n):
seq(a(n), n=0..5); # Alois P. Heinz, Nov 26 2023
MATHEMATICA
Table[Product[i^7+j^7, {i, 1, n}, {j, 1, n}], {n, 1, 6}]
PROG
(Python)
from math import prod, factorial
def A324440(n): return prod(i**7+j**7 for i in range(1, n) for j in range(i+1, n+1))**2*factorial(n)**7<<n # Chai Wah Wu, Nov 26 2023
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Feb 28 2019
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Nov 26 2023
STATUS
approved
a(n) = Product_{i=1..n, j=1..n, k=1..n} (i^3 + j^3 + k^3).
+10
4
1, 3, 353736000, 4795587079853800623303366670123008000000
OFFSET
0,2
COMMENTS
Next term is too long to be included.
FORMULA
Limit_{n->oo} a(n)^(1/(n^3)) / n^3 = exp(Integral_{x=0..1, y=0..1, z=0..1} log(x^3 + y^3 + z^3) dz dy dx) = 0.5334736919092639993380174031245...
MATHEMATICA
Table[Product[i^3 + j^3 + k^3, {i, 1, n}, {j, 1, n}, {k, 1, n}], {n, 0, 5}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jan 04 2024
STATUS
approved
Decimal expansion of Product_{i>=1, j>=1} (1 + 1/(i^3 + j^3)).
+10
3
3, 5, 0, 4, 7, 8, 2, 9, 9, 9, 3, 3, 9, 7, 2, 8, 3, 7, 5, 8, 9, 1, 1, 2, 0, 5, 7, 0, 4, 3, 8, 0, 6, 1, 2, 5, 5, 8, 3, 8, 9, 3, 2, 4, 7, 8, 6, 2, 7, 1, 2, 7, 5, 3, 5, 4, 1, 9, 9, 4, 6, 2, 6, 6, 1, 4, 0, 5, 8, 3, 8, 5, 0, 3, 5, 0, 3, 4, 7, 5, 6, 3, 5, 2, 7, 4, 7, 5, 0, 9, 5, 0, 5, 1, 3, 7, 8, 9, 1, 7, 8, 4, 5, 9, 7
OFFSET
1,1
COMMENTS
Product_{i>=1, j>=1} (1 + 1/(i^2 + j^2)) is divergent.
A324443(n) / A324403(n) ~ c * n^(Pi/2), where c = A306398 * 2^(3/4) * exp(-Pi/12) * Pi^(1/4) * Gamma(3/4) = 0.36753062884677326134620846786416595535234038999313...
Product_{i=1..n, j=1..n} (1 + 1/(i + j)) = A324444(n) / A079478(n) ~ 2^(2*n + 1) / (sqrt(Pi)*n^(3/2)).
LINKS
FORMULA
Equals limit_{n->infinity} A307210(n) / A324426(n).
EXAMPLE
3.50478299933972837589112057043806125583893247862712753541994626614058385...
MATHEMATICA
(* The iteration cycle: *) $MaxExtraPrecision = 1000; funs[n_] := Product[1 + 1/(i^3 + j^3), {i, 1, n}, {j, 1, n}]; Do[Print[N[Sum[(-1)^(m + j)*funs[j*Floor[200/m]] * j^(m - 1)/(j - 1)!/(m - j)!, {j, 1, m}], 100]], {m, 10, 100, 10}]
PROG
(PARI) default(realprecision, 50); exp(sumalt(k=1, -(-1)^k/k*sumnum(i=1, sumnum(j=1, 1/(i^3+j^3)^k)))) \\ 15 decimals correct
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Mar 28 2019
STATUS
approved

Search completed in 0.006 seconds