# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a324437 Showing 1-1 of 1 %I A324437 #22 Dec 08 2023 04:52:53 %S A324437 1,2,18496,189567553208832,53863903330477722171391434817536, %T A324437 4194051697335929481600368256016484482740174637152337920000, %U A324437 530545265060440849231458462212366841894726534233233018777709463062563850450708386692464640000 %N A324437 a(n) = Product_{i=1..n, j=1..n} (i^4 + j^4). %F A324437 a(n) ~ c * 2^(n*(n+1)) * exp(Pi*n*(n+1)/sqrt(2) - 6*n^2) * (1 + sqrt(2))^(sqrt(2)*n*(n+1)) * n^(4*n^2 - 1), where c = A306620 = 0.23451584451404279281807143317500518660696293944961... %F A324437 For n>0, a(n)/a(n-1) = A272247(n)^2 / (2*n^12). - _Vaclav Kotesovec_, Dec 01 2023 %p A324437 a:= n-> mul(mul(i^4+j^4, i=1..n), j=1..n): %p A324437 seq(a(n), n=0..7); # _Alois P. Heinz_, Jun 24 2023 %t A324437 Table[Product[i^4 + j^4, {i, 1, n}, {j, 1, n}], {n, 1, 6}] %o A324437 (Python) %o A324437 from math import prod, factorial %o A324437 def A324437(n): return (prod(i**4+j**4 for i in range(1,n) for j in range(i+1,n+1))*factorial(n)**2)**2<