[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a295633 -id:a295633
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows: T(n,k) = number of nonequivalent dissections of an n-gon into k polygons by nonintersecting diagonals up to rotation and reflection.
+10
8
1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 1, 2, 6, 7, 4, 1, 3, 11, 24, 24, 12, 1, 3, 17, 51, 89, 74, 27, 1, 4, 26, 109, 265, 371, 259, 82, 1, 4, 36, 194, 660, 1291, 1478, 891, 228, 1, 5, 50, 345, 1477, 3891, 6249, 6044, 3176, 733, 1, 5, 65, 550, 3000, 10061, 21524, 29133, 24302, 11326, 2282
OFFSET
3,8
LINKS
EXAMPLE
Triangle begins: (n >= 3, k >= 1)
1;
1, 1;
1, 1, 1;
1, 2, 3, 3;
1, 2, 6, 7, 4;
1, 3, 11, 24, 24, 12;
1, 3, 17, 51, 89, 74, 27;
1, 4, 26, 109, 265, 371, 259, 82;
1, 4, 36, 194, 660, 1291, 1478, 891, 228;
...
PROG
(PARI) \\ See A295419 for DissectionsModDihedral()
T=DissectionsModDihedral(apply(i->y, [1..12]));
for(n=3, #T, for(k=1, n-2, print1(polcoeff(T[n], k), ", ")); print)
CROSSREFS
Row sums are A001004.
Column k=3 is A003453.
Diagonals include A000207, A003449, A003450.
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Nov 24 2017
STATUS
approved
Number of nonequivalent dissections of an n-gon into n-4 polygons by nonintersecting diagonals up to rotation.
(Formerly M1859)
+10
6
1, 2, 8, 40, 165, 712, 2912, 11976, 48450, 195580, 784504, 3139396, 12526605, 49902440, 198499200, 788795924, 3131945190, 12428258796, 49295766000, 195464345440, 774857314042, 3071175790232, 12171403236288, 48233597481200, 191138095393700, 757436171945952
OFFSET
5,2
COMMENTS
In other words, the number of (n-5)-dissections of an n-gon modulo the cyclic action.
Equivalently, the number of two-dimensional faces of the (n-3)-dimensional associahedron modulo the cyclic action.
The dissection will always be composed of either 1 pentagon and n-5 triangles or 2 quadrilaterals and n-6 triangles. - Andrew Howroyd, Nov 24 2017
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. Bowman and A. Regev, Counting symmetry classes of dissections of a convex regular polygon, arXiv:1209.6270 [math.CO], 2012.
P. Lisonek, Closed forms for the number of polygon dissections, Journal of Symbolic Computation 20 (1995), 595-601.
Ronald C. Read, On general dissections of a polygon, Aequat. math. 18 (1978) 370-388.
FORMULA
See Maple program.
MAPLE
C:=n->binomial(2*n, n)/(n+1);
T31:=proc(n) local t1; global C;
t1 := (n-3)^2*(n-4)*C(n-2)/(4*n*(2*n-5));
if n mod 5 = 0 then t1:=t1+(4/5)*C(n/5-1) fi;
if n mod 2 = 0 then t1:=t1+(n-4)*C(n/2-1)/8 fi;
t1; end;
[seq(T31(n), n=5..40)];
MATHEMATICA
Table[t1 = (n - 3)^2*(n - 4)*CatalanNumber[n - 2]/(4*n*(2*n - 5)); If[Mod[n, 5] == 0, t1 = t1 + (4/5)*CatalanNumber[n/5 - 1]]; If[Mod[n, 2] == 0, t1 = t1 + (n - 4)*CatalanNumber[n/2 - 1]/8]; t1, {n, 5, 20}] (* T. D. Noe, Jan 03 2013 *)
PROG
(PARI) \\ See A295495 for DissectionsModCyclic()
{ my(v=DissectionsModCyclic(apply(i->if(i>=3&&i<=5, y^(i-3) + O(y^3)), [1..30]))); apply(p->polcoeff(p, 2), v[5..#v]) } \\ Andrew Howroyd, Nov 24 2017
CROSSREFS
A diagonal of A295633.
KEYWORD
nonn
EXTENSIONS
Entry revised (following Bowman and Regev) by N. J. A. Sloane, Dec 28 2012
Name clarified by Andrew Howroyd, Nov 25 2017
STATUS
approved
Number of nonequivalent dissections of an n-gon into n-3 polygons by nonintersecting diagonals up to rotation.
+10
6
1, 1, 4, 12, 43, 143, 504, 1768, 6310, 22610, 81752, 297160, 1086601, 3991995, 14732720, 54587280, 202997670, 757398510, 2834510744, 10637507400, 40023636310, 150946230006, 570534578704, 2160865067312, 8199711378716, 31170212479588, 118686578956272
OFFSET
4,3
COMMENTS
This is almost identical to A003444, but has a different offset and a more precise definition.
In other words, the number of almost-triangulations of an n-gon modulo the cyclic action.
Equivalently, the number of edges of the (n-3)-dimensional associahedron modulo the cyclic action.
The dissection will always be composed of one quadrilateral and n-4 triangles. - Andrew Howroyd, Nov 25 2017
Also number of necklaces of 2 colors with 2n-4 beads and n black ones. - Wouter Meeussen, Aug 03 2002
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. Bowman and A. Regev, Counting symmetry classes of dissections of a convex regular polygon, arXiv:1209.6270 [math.CO], 2012.
P. Lisonek, Closed forms for the number of polygon dissections, Journal of Symbolic Computation 20 (1995), 595-601.
Ronald C. Read, On general dissections of a polygon, Aequat. math. 18 (1978) 370-388.
FORMULA
a(n) = (1/(2n-4)) Sum_{d |(2n-4, n)} phi(d)*binomial((2n-4)/d, n/d) for n >= 4. - Wouter Meeussen, Aug 03 2002
MAPLE
C:=n->binomial(2*n, n)/(n+1);
T2:= proc(n) local t1; global C;
t1 := (n-3)*C(n-2)/(2*n);
if n mod 4 = 0 then t1:=t1+C(n/4-1)/2 fi;
if n mod 2 = 0 then t1:=t1+C(n/2-1)/4 fi;
t1; end;
[seq(T2(n), n=4..40)];
MATHEMATICA
c[n_] := Binomial[2*n, n]/(n+1);
T2[n_] := Module[{t1}, t1 = (n-3)*c[n-2]/(2*n); If[Mod[n, 4] == 0, t1 = t1 + c[n/4-1]/2]; If[Mod[n, 2] == 0, t1 = t1 + c[n/2-1]/4]; t1];
Table[T2[n], {n, 4, 40}] (* Jean-François Alcover, Nov 23 2017, translated from Maple *)
a[n_] := Sum[EulerPhi[d]*Binomial[(2n-4)/d, n/d], {d, Divisors[GCD[2n-4, n] ]}]/(2n-4);
Array[a, 30, 4] (* Jean-François Alcover, Dec 02 2017, after Andrew Howroyd *)
PROG
(PARI)
a(n) = if(n>=4, sumdiv(gcd(2*n-4, n), d, eulerphi(d)*binomial((2*n-4)/d, n/d))/(2*n-4)) \\ Andrew Howroyd, Nov 25 2017
CROSSREFS
A diagonal of A295633.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 28 2012
EXTENSIONS
Name clarified by Andrew Howroyd, Nov 25 2017
STATUS
approved
Number of nonequivalent dissections of an n-gon into 3 polygons by nonintersecting diagonals up to rotation.
(Formerly M3330)
+10
4
1, 4, 8, 16, 25, 40, 56, 80, 105, 140, 176, 224, 273, 336, 400, 480, 561, 660, 760, 880, 1001, 1144, 1288, 1456, 1625, 1820, 2016, 2240, 2465, 2720, 2976, 3264, 3553, 3876, 4200, 4560, 4921, 5320, 5720, 6160, 6601, 7084, 7568, 8096, 8625, 9200, 9776, 10400
OFFSET
5,2
COMMENTS
In other words, the number of 2-dissections of an n-gon modulo the cyclic action.
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. Bowman and A. Regev, Counting symmetry classes of dissections of a convex regular polygon, arXiv:1209.6270 [math.CO], 2012.
P. Lisonek, Closed forms for the number of polygon dissections, Journal of Symbolic Computation 20 (1995), 595-601.
Ronald C. Read, On general dissections of a polygon, Aequat. math. 18 (1978) 370-388.
FORMULA
G.f.: x^5 * (1 + 2*x - x^2 ) / ((1 - x)^4*(1 + x)^2).
See also the Maple code for an explicit formula.
a(n) = A006584(n+3) - A027656(n). - Yosu Yurramendi, Aug 07 2008
a(n) = (n-4)*(2*n^2-4*n-3*(1-(-1)^n))/24, for n>=5. - Luce ETIENNE, Apr 04 2015
MAPLE
T51:= proc(n)
if n mod 2 = 0 then n*(n-2)*(n-4)/12;
else (n+1)*(n-3)*(n-4)/12; fi end;
[seq(T51(n), n=5..80)]; # N. J. A. Sloane, Dec 28 2012
MATHEMATICA
Table[((n - 4) (2 n^2 - 4 n - 3 (1 - (-1)^n)) / 24), {n, 5, 60}] (* Vincenzo Librandi, Apr 05 2015 *)
CoefficientList[Series[(1+2*x-x^2)/((1-x)^4*(1+x)^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 05 2015 *)
PROG
(PARI) Vec((1 + 2*x - x^2 ) / ((1 - x)^4*(1 + x)^2) + O(x^50)) \\ Michel Marcus, Apr 04 2015
(PARI) \\ See A295495 for DissectionsModCyclic()
{ my(v=DissectionsModCyclic(apply(i->y, [1..30]))); apply(p->polcoeff(p, 3), v[5..#v]) } \\ Andrew Howroyd, Nov 24 2017
(Magma) [(n-4)*(2*n^2-4*n-3*(1-(-1)^n))/24: n in [5..60]]; // Vincenzo Librandi, Apr 05 2015
CROSSREFS
Column 3 of A295633.
KEYWORD
nonn
EXTENSIONS
Entry revised (following Bowman and Regev) by N. J. A. Sloane, Dec 28 2012
First formula adapted to offset by Vaclav Kotesovec, Apr 05 2015
Name clarified by Andrew Howroyd, Nov 25 2017
STATUS
approved
Number of embeddings on the sphere of Halin graphs on n unlabeled nodes up to orientation-preserving homeomorphisms.
+10
3
0, 0, 0, 1, 1, 2, 2, 4, 7, 16, 32, 76, 181, 443, 1098, 2793, 7127, 18458, 48128, 126580, 334955, 892187, 2388674, 6428489, 17377599, 47174939, 128555088, 351580903, 964696719, 2655197386, 7329051870, 20284610084, 56283140111, 156537249660, 436338547904, 1218824493990, 3411297202411
OFFSET
1,6
COMMENTS
Halin graphs are planar and 3-connected and can be embedding in the sphere in essentially one way up to mirror symmetry. This sequence counts each graph as either 1 or 2 depending on if it is mirror symmetric.
LINKS
Eric Weisstein's World of Mathematics, Halin Graph.
Wikipedia, Halin graph.
PROG
(PARI) A380360seq(36) \\ See PARI Link in A380362 for program code.
CROSSREFS
Row sums of A380361.
Antidiagonal sums of A295633.
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Jan 25 2025
STATUS
approved
Triangle read by rows: T(n,k) is the number of embeddings on the sphere of Halin graphs on n unlabeled nodes with circuit rank k up to orientation-preserving homeomorphisms, 3 <= k <= n-1.
+10
3
1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 0, 4, 2, 1, 0, 0, 0, 4, 8, 3, 1, 0, 0, 0, 0, 12, 16, 3, 1, 0, 0, 0, 0, 6, 40, 25, 4, 1, 0, 0, 0, 0, 0, 43, 93, 40, 4, 1, 0, 0, 0, 0, 0, 19, 165, 197, 56, 5, 1, 0, 0, 0, 0, 0, 0, 143, 505, 364, 80, 5, 1
OFFSET
4,14
COMMENTS
The circuit rank is equal to the number of leaves on the tree before it is extended into a Halin graph by joining up the leaves.
The main diagonal of the graph corresponds with the wheel graphs which have the greatest circuit rank of all Halin graphs.
T(n,k) is also the number of nonequivalent dissections of a k-gon into n-k polygons by nonintersecting diagonals up to rotation.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 4..1278 (first 50 rows)
Eric Weisstein's World of Mathematics, Halin Graph.
Wikipedia, Circuit rank.
Wikipedia, Halin graph.
FORMULA
T(n,k) = A295633(k, n-k).
EXAMPLE
Triangle begins:
n\k| 3 4 5 6 7 8 9 10 11 12 13
-----+-----------------------------------------
4 | 1;
5 | 0, 1;
6 | 0, 1, 1;
7 | 0, 0, 1, 1;
8 | 0, 0, 1, 2, 1;
9 | 0, 0, 0, 4, 2, 1;
10 | 0, 0, 0, 4, 8, 3, 1;
11 | 0, 0, 0, 0, 12, 16, 3, 1;
12 | 0, 0, 0, 0, 6, 40, 25, 4, 1;
13 | 0, 0, 0, 0, 0, 43, 93, 40, 4, 1;
14 | 0, 0, 0, 0, 0, 19, 165, 197, 56, 5, 1;
...
PROG
(PARI) \\ See PARI Link in A380362 for program code.
{ my(T=A380361rows(12)); for(i=1, #T, print(T[i])) }
CROSSREFS
Row sums are A380360.
Column sums are A003455.
Main diagonal is A000012.
Central coefficients are A001683.
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Jan 25 2025
STATUS
approved

Search completed in 0.006 seconds