[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Search: a248759 -id:a248759
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = (3*n)!/n!.
+10
10
1, 6, 360, 60480, 19958400, 10897286400, 8892185702400, 10137091700736000, 15388105201717248000, 30006805143348633600000, 73096577329197271449600000, 217535414131691079834009600000
OFFSET
0,2
COMMENTS
Also a(n) = (((n)!)^2)*A006480(n). [corrected by Johannes W. Meijer, Mar 02 2009]
a(n) is the number of ways to partition the set {1,2,...,3n} into n blocks of size 3 and then linearly order the elements within each block. - Geoffrey Critzer, Dec 30 2012
LINKS
Karol A. Penson and Allan I. Solomon, Coherent states from combinatorial sequences, in: E. Kapuscik and A. Horzela (eds.), Quantum theory and symmetries, World Scientific, 2002, pp. 527-530; arXiv preprint, arXiv:quant-ph/0111151, 2001.
FORMULA
Integral representation as n-th moment of a positive function on a positive half-axis, in Maple notation: a(n)=int(x^n*BesselK(1/3, 2*sqrt(x/27))/(3*Pi*sqrt(x)), x=0..infinity), n=0, 1, ...
A recursive formula: a(n) = (27 * (n - 1)^2 + 27 * (n - 1) + 6) * a(n - 1) with a(0) = 1. An explicit formula following from the recursion equation: a(n) = (3/2)*27^n*GAMMA(n+2/3)*GAMMA(n+1/3)/(Pi*3^(1/2)). - Thomas Wieder, Nov 15 2004
E.g.f.: (of aerated sequence) 2*cos(arcsin((3*sqrt(3)*x/2)/3))/sqrt(4-27*x^2). - Paul Barry, Jul 27 2010
E.g.f.: (with interpolated zeros) exp(x^3). - Geoffrey Critzer, Dec 30 2012
Sum_{n>=1} 1/a(n) = A248759. - Amiram Eldar, Nov 15 2020
MATHEMATICA
Table[(3n)!/n!, {n, 0, 20}] (* Geoffrey Critzer, Dec 30 2012 *)
PROG
(PARI) { t=f=1; for (n=0, 70, if (n, t*=3*n*(3*n - 1)*(3*n - 2); f*=n); write("b064350.txt", n, " ", t/f) ) } \\ Harry J. Smith, Sep 12 2009
CROSSREFS
From Johannes W. Meijer, Mar 07 2009: (Start)
Equals A001525*3!
Equals row sums of A157704 and A157705. (End)
KEYWORD
nonn
AUTHOR
Karol A. Penson, Sep 18 2001
EXTENSIONS
a(11) from Harry J. Smith, Sep 12 2009
STATUS
approved
Decimal expansion of sum_{n >= 1} (2n)!/(3n)!.
+10
4
3, 6, 8, 7, 3, 7, 8, 2, 0, 2, 9, 4, 6, 4, 9, 9, 0, 4, 0, 8, 9, 7, 7, 7, 2, 9, 6, 1, 6, 5, 7, 4, 0, 3, 4, 2, 0, 9, 8, 3, 7, 1, 9, 7, 8, 8, 1, 4, 6, 9, 8, 4, 9, 1, 0, 6, 8, 7, 8, 2, 5, 7, 4, 5, 8, 9, 0, 5, 9, 0, 1, 7, 3, 5, 7, 9, 6, 1, 9, 0, 0, 6, 7, 1, 5, 4
OFFSET
0,1
EXAMPLE
0.368737820294649904089777296165740342098371978814698491068782574589059...
MAPLE
evalf(sum((2n)!/(3n)!, n=1..infinity), 120); # Vaclav Kotesovec, Oct 19 2014
MATHEMATICA
u = N[Sum[(2 n)!/(3 n)!, {n, 1, 300}], 120]
RealDigits[u] (* A248760 *)
N[HypergeometricPFQ[{1, 3/2}, {4/3, 5/3}, 4/27]/3, 120] (* Vaclav Kotesovec, Nov 15 2020 *)
PROG
(PARI) suminf(n=1, (2*n)!/(3*n)!) \\ Michel Marcus, Oct 19 2014
CROSSREFS
KEYWORD
nonn,easy,cons
AUTHOR
Clark Kimberling, Oct 13 2014
STATUS
approved
Decimal expansion of sum_{n >= 1} 1/sqrt(n!).
+10
3
2, 4, 6, 9, 5, 0, 6, 3, 1, 4, 5, 2, 1, 0, 4, 7, 5, 6, 2, 4, 7, 5, 6, 3, 6, 7, 4, 4, 6, 6, 0, 1, 5, 0, 2, 5, 7, 6, 8, 9, 7, 5, 6, 1, 8, 3, 9, 9, 4, 9, 6, 9, 1, 9, 9, 6, 7, 7, 9, 2, 5, 7, 0, 1, 9, 7, 1, 8, 3, 5, 4, 8, 8, 0, 0, 3, 4, 0, 8, 8, 3, 4, 0, 3, 8, 6, 6, 2, 5, 0, 8, 4, 1, 2, 0, 0, 7, 1, 3, 5, 1, 7, 2, 6, 1
OFFSET
1,1
EXAMPLE
2.46950631452104756247563674466015025768975618399496919967792570...
MAPLE
evalf(sum(1/sqrt(n!), n=1..infinity), 120); # Vaclav Kotesovec, Oct 19 2014
MATHEMATICA
u = N[Sum[1/Sqrt[n!], {n, 1, 200}], 100]
RealDigits[u] (* A248761 *)
PROG
(PARI) suminf(n=1, (1/sqrt(n!))) \\ Michel Marcus, Oct 18 2014
CROSSREFS
KEYWORD
nonn,easy,cons
AUTHOR
Clark Kimberling, Oct 13 2014
STATUS
approved

Search completed in 0.007 seconds